Feeds:
Posts
Comments

Archive for the ‘Research’ Category

miniaturerobots_111417

 

Mini Robots Could Cut Pesticide Use, Food Waste, and Help Harvests


UNITED KINGDOM – Could miniature robots be joining the ranks of farmhands around the globe? According to The Guardian, yes, but optimistically, not for another couple of years. Developing in laboratories now, academic farming experts are researching whether miniature robots are a solution to chemical use, food waste, and labor shortages on farms, and posit that while a possible solution, mini robots might not be the answer farmers are seeking yet.

As reported by the source, current blanket practices waste 95% to 99% of pesticides and herbicides as the method “blankets” chemicals across entire fields, allowing pests and weeds to grow resistant, harming helpful pollinators like bees, and essentially rendering the chemicals ineffective over time.
Toby Bruce, Professor of Insect Chemical Ecology, Keele University

Toby Bruce, Professor of Insect Chemical Ecology, Keele University“Farmers have been heavily reliant for decades on the heavy use of pesticides. Some spraying is very desperate,” said Toby Bruce, Professor of Insect Chemical Ecology at Keele University, according to The Guardian. “Farmers are spraying [chemicals] to which there is resistance. They will not be killing pests as the pests have evolved resistance. They will be killing other insects [such as pollinators].”
In order to reduce pesticide waste and its harmful side effects, researchers are programming the robots to be able to apply tiny quantities of pesticides directly to the plants that need them.
Robots aiding in farming a cabbage field

Robots aiding in farming a cabbage field

The robots are also able to detect when fruit and vegetables are too small or malformed to be harvested. Because malformed produce typically has a lower market value, this would help reduce food waste and allow produce enough time to be harvested when it is ready.
With labor shortages worrying farmers worldwide, the mini robots could also provide the extra hands needed to harvest crops in the field. And this isn’t the only place in our industry seeking extra help from artificial intelligence. Last month, Giant Foods stores piloted Marty, and Walmart began testing shelf-scanning robots in over fifty stores.
While robots seem to be an easy solution, The Guardian reported that the technology is not at an advanced enough stage to implement in the field just yet, and noted that start-ups are needed to spearhead this innovation as many farm technology companies are unwilling to give up their current business models.
With technology advancing every day and offering different ways to rid pests and minimize waste, are mini robots the future of sustainable farming? AndNowUKnow will continue to report on the robot takeover.

Read Full Post »

Newsnewswise-logo-

Released: 2-Nov-2017 6:05 PM EDT

Source Newsroom: South Dakota State University

  • Under moist conditions, the Diaporthe pathogens on these soybean stems multiply.

  • South Dakota State University field crops pathologist Febina Mathew and Kristina Petrović, a visiting scientist from Serbia, examine soybeans for evidence of stem canker, focusing on the nodes or joints. Not only is this disease hard to distinguish from other soybean diseases, but the pathogen can be transmitted through the seeds.

  • Reddish brown lesions, particularly at the joint or node, are indications of soybean stem canker.

  • Kristina Petrović, a visiting scientist from Serbia, examines Diaporthe pathogens isolated from soybeans that farmers, crop consultants and soybean researchers across the United States have sent to South Dakota State University field crop pathologist Febina Mathew.

  • Newswise — Scouting soybean fields and identifying diseases are some of the tasks that Kristina Petrović performs as a research associate at the Institute of Field and Vegetable Crops in Serbia. She is expanding her work on pathogens that affect soybeans as a visiting scientist at South Dakota State University, where she is working with field crops pathologist Febina Mathew, an assistant professor in the Department of Agronomy, Horticulture and Plant Science.

“I am happy when I find disease,” Petrović quipped. She was the first to report that three species of Diaporthe, the pathogen that causes stem canker of soybean, were triggering Phomopsis seed decay in Serbia. Petrović published two papers on her findings in Plant Disease, an American Phytopathological Society journal. When she told the journal editor that she wanted to do postdoctoral research in the United States, he circulated her credentials among the society’s members.

“After four days, Febina invited me to South Dakota State University to examine the Diaporthe species causing soybean disease in the United States,” Petrović recalled. Her 10-month residency, which began in August, is supported by a grant from the Serbian government and funding from the Institute of Field and Vegetable Crops. She also received support for her SDSU research from the North Central Soybean Research Program and the South Dakota Agricultural Experimental Station.

The world has two main types of stem canker—the Northern variety, which likes cool temperatures and affects both South Dakota and Serbian soybeans, and the Southern, which can survive high temperatures. Both types like moisture, Petrović explained.

Plants are infected when raindrops hit pathogen-containing plant residue and splash the fungus spores onto the young soybean plants. “At the end of July or beginning of August, when soybeans are in their pod-fill stage, we see the first symptoms, dark brown lesions the spread up and down the plant,” she said.

“Planting resistant genotypes is the best option for producers,” Petrović explained.  In Serbia, she said, “Our genotypes have good field resistance, but not complete resistance. However, we are trying to find the most resistant or tolerant soybean genotypes.”

In the United States, five Diaporthe species are causing soybean disease, according to Mathew. She and North Dakota State University Extension Plant Pathologist Sam Markell found Diaporthe gulyae, which causes Phomopsis stem canker in sunflowers, associated with stem disease on soybeans.

Recently plant scientists have seen an increase in soybean diseases caused by Diaporthe (Phomopsis) species in the United States, according to Mathew. Petrović’s research will help identify the pathogens behind this increased disease prevalence.

“I want to know more about the relationship among the Diaporthe species,” said Petrović. To do this, she’ll examine the pathogens’ diversity using phylogenetics. She and Mathew will also screen soybean genotypes to identify sources of resistance to Diaporthe species that will help breeders develop resistant soybean cultivars.

This research will help scientists develop strategies to manage the disease that will benefit farmers not only in the United States, but also in Serbia.

SEE ORIGINAL STUDY

 

Read Full Post »

science daily -logo

These  can dive, swim, and jump like dolphins

Puffins, flying fish, and dolphins are naturals in both the air and sea, moving from one to the other with ease. Now, for the first time, a tiny robot is joining their routine. The bee-sized bot, which can fly by flapping its tiny wings, has been re-engineered to dive into water, swim, take off again, and land safely. Once it dries off, the “robo-bee” can repeat the whole routine—or go back to flying. But engineering for water wasn’t easy. The researchers realized early on that their 175-milligram bot needed help staying upright underwater. So they added stabilizing cross beams and slowed down how quickly it beat its wing: In air, the wings flap about 250 times per second; in water, they average about nine beats per second. Any faster than that, and the bot starts to tilt and twist and can even fall apart. The bot also needed help breaking through the water’s surface tension, so the researchers figured out how to give it a push with an electrical device that converts water into oxygen and hydrogen, plus a “sparker” that can ignite these gases. After 2 minutes, the gases build and make the bot buoyant enough to get its wings out of the water. Then the spark blows up the gases, and the bot shoots up about 35 centimeters at a speed of more than 2 meters per second, the researchers report today in Science Robotics. The bot can’t fly again until it dries out, but its design helps it glide to a safe landing. And though it’s unlikely to perform at Sea World, this versatile bot may one day help with ocean search and rescue, fish surveys, and environmental monitoring.

Read Full Post »

SW FarmPress

Drones
A panel of researchers discussed possible applications for UAS—unmanned aerial systems—at the recent American Peanut Research and Education Society (APRES) annual meeting in Albuquerque.

 

Ron Smith | Jul 19, 2017

The initial “gee whiz what a great idea” phase of unmanned aerial vehicle introduction has abated, somewhat, leaving the folks genuinely interested in using the technology for commercial endeavors now asking: “How will this amazing technology help me run my business?”

A panel of researchers discussed possible applications for UAS—unmanned aerial systems—at the recent American Peanut Research and Education Society (APRES) annual meeting in Albuquerque. Panelists Jamey Jacob, Oklahoma State University; Sarah Pelham, University of Georgia; Josh McGinty, Texas A&M AgriLife; and Maria Batola, Virginia Tech, agreed that unmanned aerial vehicles—drones—are capable of “taking pretty pictures,” but that extracting useful data from those images requires a bit of tedious work and ongoing study into how to collect and use data.

“Collecting data is a piece of cake,” Batola said. “We get beautiful pictures in 10 to 15 minutes, but it may take several hours to analyze the data from those images.”

And data, she said, is the reason to fly the drones. “Big data is a big deal. We want to develop phenotyping tools to aid plant breeders and to develop remote sensing tools to benefit agricultural producers.”

Batola says ag research has used ground unit remote sensing tools for years. “Now, we want to compare those with UAS.”

PRACTICAL APPLICATION

She said remote sensing studies at Virginia Tech have included efforts to estimate yields and to develop a nitrogen stability index. “We want to improve nitrogen management in wheat,” she said.

She’s looking at drought stress research in peanuts, evaluating various genotypes to observe wilting, yield and mature kernel potential, and crop values. “We want to find coefficients of correlation,” Batola said.

Pelham, a graduate student at the University of Georgia, is evaluating disease and phenotype relationships in peanuts “using unmanned aerial systems.” Tomato spotted wilt virus is a key disease target. She’s also looking at leaf spot and nematodes. “We want to use UAS to identify areas in the field with nematode infestations.”

She says different peanut genotypes show “different spectral signatures with different colors in the field.” Some varieties may be greener than others, for instance.

Drones also help evaluate stand count. “We can evaluate stands and determine a threshold for replant,” she said, “and we can determine where stands are thin and replant only those areas.”

Evaluating and predicting yield, she said, is another potential objective for UAS.

SYSTEMS EVOLVING

Jacob says making UAV technology an integral part of commerce has “a long way to go. The period of hype that comes with introduction of new technology does fade as some lose interest and some disillusionment sets in.” The task now, he said, is to find how to use UAS in a productive way.

The adoption will come, he added. “The current (younger) generation will be the last to get a driver’s license.” Driverless vehicles will become normal, he said. “Millennials, instead of having texting distract them from driving will think driving distracts them from texting.”

Agriculture, he added, will offer a big market for UAV use. “In Japan, UAVs have proven useful on small farms for spraying and other tasks.” Widespread use for more than imaging could be more problematic for large-scale farms. Potential uses include crop monitoring, chemical applications, and airborne imagery. But cost could be a factor. Manned aerial vehicles could, in some cases, be a better choice. Imagery would be takes from as high as 10,000 feet with a manned aircraft, he said. “UAVs have higher resolution, but do you need it? A lot depends on the cost and the crop value and what you need from the imagery.”

Jacob said UAVs will improve and find more uses. With normalized differentiated visual imagery (NVID) producers can identify areas of vegetation that are healthier than other areas. “We can get biomass estimations with added sensors and perhaps estimate crop yields. Plant diagnostic capabilities may improve to being capable of collecting data associated with a single plant.”

 He said automated weed databases will be configured to send data to automated ground vehicles that will target sprays.

REGULATORY ISSUES

Jacob says regulations continue to limit some uses. For instance, users currently have altitude limits and must keep the UAV in sight, which requires someone on the ground to monitor the vehicle. That could change in the future to allow a user to  monitor and control a unit from an office, collect data, process with a computer and take action from the information collected—without leaving the desk.

Challenges with that system include increased risk, insurance options and safety precautions.

He said technology is getting cheaper, but cost will be driven by the application and the size needed to perform certain tasks. A vehicle capable of spraying, for instance, would be heavier, and more expensive than a small rotor drone that mostly takes photos.

McGinty says in the future, UAS will be used to collect field data and use it for decisions or to evaluate research efforts. “We will collect and process data and determine what information will be useful and how best to use it. That’s the goal, but we’re not there yet.”

He’s using mostly rotor units for crop research evaluations, and fixed-wing for some pasture and rangeland studies. Fixed wing, he said, covers more area.

In research plots, he’s using drones to check plant growth, including plant height and canopy cover. Assessing plant health with NDVI is also a possibility. “We want to be able to use UAS data to predict yield,” he said. Drones are evaluating plant height and boll and bloom counts in cotton. “Boll counts have proven to be of less value than we anticipated,” he said. “But we are looking at different ways to use that data.”

He said looking at bloom counts may help identify stressed plants.

He’s also looking at sorghum. “We can collect images of sorghum panicles, but we have to count by hand. We want to automate that. But even having to do counts manually in the office is better than counting in the field in the heat and humidity of Corpus Christi.”

He said research on sorghum is in early stages. “We have only one year of data.

PROCESSING PROBLEMS

“Our biggest struggle so far is in sharing data,” McGinty said. “After collecting data, we may spend from eight to 12 hours processing it.” Going through a UAS Hub located at College Station streamlines the process.

The initial hype, Jacob says, has diminished. Regulations remain in place with the FAA still in control of drone flights, but rules are under review as more units are put in use and as technology improves control.

The key to making a drone a useful tool for agricultural research and for on-farm applications, the four researchers said, is to find ways to put the collected data to use in decision making. Data is the crucial factor, and the technology is not available yet to collect, process and use the information efficiently.

“Big data is essential for crop use,” Jacob said. “We can take pretty pictures, but we’re not to big data yet.”

 

Read Full Post »

Science

Wheat in Oklahoma.
George Thomas/Flickr (CC BY-NC-ND 2.0)

Crop breeders sprout plan to boost public sector research

Universities need to get better at sharing patented seeds and other products of publicly-funded agricultural science if the United States wants to keep producing bountiful harvests, argues a new report from a group of leading academic researchers.

The 50 researchers also call on the federal government to provide better funding for crop breeding efforts at public universities, and for universities to develop new ways of steering revenues from popular crop varieties back into research.

The recommendations come amidst growing concern about the future of public-sector plant breeding programs. Researchers at private agricultural firms tend to focus on creating better varieties of widely-grown, high-value crops, such as wheat and corn. But the task of improving lower-value but still important crops—such as oats, potatoes, or forages for livestock—has been largely left to scientists at public universities and laboratories run by federal and state agencies. Public breeding has been withering, however, as it has become increasingly dependent on less reliable, short-term funding sources that make it difficult to sustain a year-round breeding program. And it has been hampered by intellectual property practices that can make it difficult to share genetic material and other resources.

Sign up for our daily newsletter

Get more great content like this delivered right to you!

By providing your email address, you agree to send your email address to the publication. Information provided here is subject to Science’s Privacy Policy.

To identify solutions, researchers gathered in Raleigh, North Carolina, last year for an Intellectual Property Rights for Public Plant Breeding summit.

Plant genetic materials were once freely shared between institutions, the researchers note. But over the last few decades, university technology transfer offices have cracked down on how materials are exchanged and licensed—which has created confusion and slowed the creation of new varieties.

To speed progress, the group calls for the adoption of a “professional standard”—similar to a code of ethics—that facilitates immediate, easy sharing of cultivars and other breeding material. The group also wants farmers to be allowed to save seed from cultivars developed by the public sector. (Private firms often forbid such seed saving.)

Many problems boil down to unrealistic expectations within university technology transfer offices about the potential commercial value of new varieties, says Pat Hayes, a barley breeder at Oregon State University in Corvallis. On rare occasions, new breeds do reap impressive financial returns. The Honeycrisp apple generated around $14 million for the University of Minnesota before its patent expired, and new strawberry varieties developed at the University of California (UC), Davis, have generated $37 million over the past 5 years.

But even though most varieties don’t generate that kind of income, public universities often opt for overly restrictive intellectual property agreements in a bid to protect potential earnings from their use. “When it comes to tech transfer, it’s often a one-size-fits-all model, dominated by patents,” says wheat breeder P. Stephen Baenziger of the University of Nebraska in Lincoln. But there are other ways of protecting intellectual property that could ease sharing, he notes.

A conversation about better ways to distribute revenue generated by publicly-created crop varieties is also overdue, says Bill Tracy, a sweet corn breeder at the University of Wisconsin in Madison and one of the summit’s organizers. For example, he notes that the University of Florida returns royalties just to the inventor’s program when the revenue stream is relatively small, but spreads the wealth across the institution’s broader crop breeding programs when revenues are bigger. As a result, the report notes, Florida boasts more crop varieties released—and more graduate students supported—than similarly situated institutions.

Developing creative funding strategies may also be key to recruiting the next generation of public-sector crop breeders, researchers say. “Most of current faculty are long of tooth and gray of muzzle,” says Hayes, and “strategies able to create attractive academic positions … are needed.”

The timing may be ripe. “Tech transfer offices have had several years to realize that not everything is going to be the next UC Davis strawberry,” says Margaret Smith, a field corn breeder at Cornell University. “A patent for a crop variety,” she says, “isn’t the same as one for an engineering widget.”

Read Full Post »

Science/AAAS

Examples of eight fruit fly brains with regions highlighted that are significantly correlated with (clockwise from top left) walking, stopping, increased jumping, increased female chasing, increased wing angle, increased wing grooming, increased wing extension, and backing up.

Kristin Branson

Artificial intelligence helps scientists map behavior in the fruit fly brain

Can you imagine watching 20,000 videos, 16 minutes apiece, of fruit flies walking, grooming, and chasing mates? Fortunately, you don’t have to, because scientists have designed a computer program that can do it faster. Aided by artificial intelligence, researchers have made 100 billion annotations of behavior from 400,000 flies to create a collection of maps linking fly mannerisms to their corresponding brain regions.

Experts say the work is a significant step toward understanding how both simple and complex behaviors can be tied to specific circuits in the brain. “The scale of the study is unprecedented,” says Thomas Serre, a computer vision expert and computational neuroscientist at Brown University. “This is going to be a huge and valuable tool for the community,” adds Bing Zhang, a fly neurobiologist at the University of Missouri in Columbia. “I am sure that follow-up studies will show this is a gold mine.”

At a mere 100,000 neurons—compared with our 86 billion—the small size of the fly brain makes it a good place to pick apart the inner workings of neurobiology. Yet scientists are still far from being able to understand a fly’s every move.

Sign up for our daily newsletter

Get more great content like this delivered right to you!

By providing your email address, you agree to send your email address to the publication. Information provided here is subject to Science’s Privacy Policy.

To conduct the new research, computer scientist Kristin Branson of the Howard Hughes Medical Institute in Ashburn, Virginia, and colleagues acquired 2204 different genetically modified fruit fly strains (Drosophila melanogaster). Each enables the researchers to control different, but sometimes overlapping, subsets of the brain by simply raising the temperature to activate the neurons.

Then it was off to the Fly Bowl, a shallowly sloped, enclosed arena with a camera positioned directly overhead. The team placed groups of 10 male and 10 female flies inside at a time and captured 30,000 frames of video per 16-minute session. A computer program then tracked the coordinates and wing movements of each fly in the dish. The team did this about eight times for each of the strains, recording more than 20,000 videos. “That would be 225 straight days of flies walking around the dish if you watched them all,” Branson says.

Next, the team picked 14 easily recognizable behaviors to study, such as walking backward, touching, or attempting to mate with other flies. This required a researcher to manually label about 9000 frames of footage for each action, which was used to train a machine-learning computer program to recognize and label these behaviors on its own. Then the scientists derived 203 statistics describing the behaviors in the collected data, such as how often the flies walked and their average speed. Thanks to the computer vision, they detected differences between the strains too subtle for the human eye to accurately describe, such as when the flies increased their walking pace by a mere 5% or less.

“When we started this study we had no idea how often we would see behavioral differences,” between the different fly strains, Branson says. Yet it turns out that almost every strain—98% in all—had a significant difference in at least one of the behavior statistics measured. And there were plenty of oddballs: Some superjumpy flies hopped 100 times more often than normal; some males chased other flies 20 times more often than others; and some flies practically never stopped moving, whereas a few couch potatoes barely budged.

Then came the mapping. The scientists divided the fly brain into a novel set of 7065 tiny regions and linked them to the behaviors they had observed. The end product, called the Browsable Atlas of Behavior-Anatomy Maps, shows that some common behaviors, such as walking, are broadly correlated with neural circuits all over the brain, the team reports today in Cell. On the other hand, behaviors that are observed much less frequently, such as female flies chasing males, can be pinpointed to tiny regions of the brain, although this study didn’t prove that any of these regions were absolutely necessary for those behaviors. “We also learned that you can upload an unlimited number of videos on YouTube,” Branson says, noting that clips of all 20,000 videos are available online.

Branson hopes the resource will serve as a launching pad for other neurobiologists seeking to manipulate part of the brain or study a specific behavior. For instance, not much is known about female aggression in fruit flies, and the new maps gives leads for which brain regions might be driving these actions.

Because the genetically modified strains are specific to flies, Serre doesn’t think the results will be immediately applicable to other species, such as mice, but he still views this as a watershed moment for getting researchers excited about using computer vision in neuroscience. “I am usually more tempered in my public comments, but here I was very impressed,” he says.

Read Full Post »

From PestNet/www.pestnet.org/Grahame Jackson

PhysOrg

https://phys.org/news/2017-05-four-billion-year-old-fossil-protein-resurrected-bacteria.html

 

old virus

This figure shows two possible outcomes from a viral attempt to infect the cell. On the left, the virus binds to the bacterium, injects its genetic info, and stops because it can’t recruit the needed proteins. On the right, the virus binds to the cell, injects the genetic info, recruits the proteins, and starts replicating, resulting in the cell bursting and releasing more viruses. Credit: Jose Sanchez-Ruiz

Read more at: https://phys.org/news/2017-05-four-billion-year-old-fossil-protein-resurrected-bacteria.html#jCp

 

In a proof-of-concept experiment, a 4-billion-year-old protein engineered into modern E. coli protected the bacteria from being hijacked by a bacteria-infecting virus. It was as if the E. coli had suddenly gone analogue, but the phage only knew how to hack digital. The ancient protein, an ancestral form of thioredoxin, was similar enough to its present-day analogues that it could function in E. coli but different enough that the bacteriophage couldn’t use the protein to its advantage. The work, which could be useful in plant bioengineering, appears May 9 in Cell 

“This is an arms race. Thioredoxin has been changing in evolution to avoid being hijacked by the virus, and the virus has been evolving to hijack the protein,” says senior author Jose Sanchez-Ruiz of the University of Granada in Spain. “So we go back, and we spoil all of the virus’ strategy.”

Sanchez-Ruiz’s lab specializes in reconstructing ancient gene sequences that code for proteins. Since proteins do not preserve for billions of years, the researchers make their best estimation of the ancient protein based on genetic data across many different taxa. Thioredoxin, a versatile work-horse protein that moves electrons around so that chemical reactions in the cell can occur, is a favorite in the lab because it has been around almost since the origin of life and it is present in all modern organisms. We can’t live without it, nor can E. coli.

Thioredoxin also happens to be one of the proteins that bacteriophage must recruit to survive and replicate. Without a hijack-able thioredoxin, the virus hits a dead end. In a series of experiments led by Asunción Delgado, then a post-doc at the University of Granada, the researchers tested seven reconstructions of primordial thioredoxins, ranging in age from 1.5 billion years old to 4 billion years, to see if they could function in modern E. coli.

The old-school thioredoxins passed the test with varying degrees of success. “That was a bit surprising,” says Delgado. “The modern organism is a completely different cellular environment. Ancestral thioredoxins had different molecular partners, different everything. The farther back we get from present, the less they work in a modern organism. But even when we get back to close to the origin of life, they still show some functionality.”

But the ancestral thioredoxins were just different enough that the modern phage couldn’t recognize or bind to them.

However, resurrecting ancient proteins may be useful as more than a scientific curiosity. Virologists tend to focus on the human-infecting ones, but the viruses that kill the most people are not human pathogens but rather the viruses that kill off crops, sparking famines and mass starvation. Delgado, Sanchez-Ruiz, and their colleagues speculate that ancient proteins could be edited into plants to confer protection against crop-killing viruses. However, this idea has yet to be tested in plants.

“If this is applied to plants, it wouldn’t be genes from ancient bacteria; it would be genes from the same plant. It would be the ancestral version of a gene from the same plant,” says Sanchez-Ruiz. “This is genetic alteration, of course, but it is a mild genetic alteration. This is not like having a gene from one species being transferred to a different species. Also, this would not be like Jurassic Park. It would just be a comparatively small change in a gene that the plant already has.”

Protein resurrection experiments could also shed light on how evolution works at the protein level. “What we can do is let the virus evolve to adapt to the ancestral protein, and then do the experiment in reverse,” says Sanchez-Ruiz. “Once it’s adapted to the ancestral protein, we can test how it reacts to the modern protein. We can see if it repeats the evolution. So it would be kind of a molecular version of this Stephen J. Gould ‘replaying the tape of life’ idea.”

The researchers’ next set of experiments will focus on the fundamentals of protein evolution, but they point out that understanding and resurrecting old proteins could be a key resource for biotech. Instead of introducing new elements, bioengineers may be able to re-use older ones from earlier in viruses and cells’ co-evolutionary history. “Some people think that evolution is just a theory or is just some kind of philosophic explanation,” says Sanchez-Ruiz. “Evolutionary studies have practical applications.”

Explore further: ‘Digging up’ 4-billion-year-old fossil protein structures to reveal how they evolved

More information: Cell Reports, Delgado et al.: “Using Resurrected Ancestral Proviral Proteins to Engineer Virus Resistance” http://www.cell.com/cell-reports/fulltext/S2211-1247(17)30531-4DOI: 10.1016/j.celrep.2017.04.037

Journal reference: Cell Reports

Provided by: Cell Press

Read more at: https://phys.org/news/2017-05-four-billion-year-old-fossil-protein-resurrected-bacteria.html#jCp

 

Read Full Post »

Older Posts »