Feeds:
Posts
Comments

Archive for the ‘Mites’ Category

New, Improved, and Expanded!
Field Guide to African Soybean Diseases, Pests & Nutrient Deficiencies

Available Now!
April 1, 2021
  It’s here! The new and improved Field Guide is available for free now. Click here to access.   You asked, we delivered. The Soybean Innovation Lab’s (SIL) network of growers, breeders, agronomists, researchers, seed companies, practitioners, and extension agents needed a practical solution for identifying and addressing soybean diseases, pests, and nutrient deficiencies in the field. In response, SIL developed a pictorial, easy-to-use guide that provides diagnostic tools, management solutions, and guidance for achieving a healthy soybean crop.   The new & improved guide includes more information on important soybean pests and diseases, and a section on identifying and managing nutrient deficiencies, commonly confused for soybean diseases in the field. The guide contains more than 110 images gathered from SIL’s disease scouting network and soybean experts.     The Field Guide to African Soybean Diseases, Pests & Nutrient Deficiencies includes 7 sections to identify and address 44 potential threats to yield.   The expanded Field Guide covers important soybean diseases, pests and nutrient deficiencies including, from left, clockwise: Soybean Rust, Frogeye Leaf Spot, Calcium deficiency, Grasshopper, Stink Bug, Caterpillar, Bean Leaf Folder.   As soybean production increases across Africa, disease and pest pressures become more threatening to growers. The soybean industry requires knowledge on how to identify and manage soybean diseases, prepare for outbreaks, and understand varietal resistance to prevent potentially devastating yield losses due to soybean diseases.

The SIL Field Guide to African Soybean Diseases, Pest, & Nutrient Deficiencies is the the first and most comprehensive pictorial guide available to soybean producers in Africa.
    Download pdf here   Access an online version here   Field Guide Authors   The Field Guide to African Soybean Diseases, Pests, & Nutrient Deficiencies Version 2.0 was written by (left to right):  George Awuni, PhD, Plant and Soil Sciences, Mississippi State University Glen Hartman, PhD, USDA-ARS and Crop Sciences, University of Illinois Nicole Lee, Crop Sciences, University of Illinois Harun Muthuri Murithi, PhD, Plant Pathologist, ARS-USDA Michelle Pawlowski, PhD, Crop Sciences, University of Illinois Daniel B. Reynolds, PhD, Plant and Soil Sciences, Mississippi State University   The first edition of the Field Guide is available in 4 languages: English, French, Portuguese, and Amharic and has been used extensively by SIL’s network of soybean practitioners acoss 24 African countries.     “For the past 4 years all Pyxus agriculture Field Technicians are using the Field Guide to African Soybean Diseases and Pests.

“Whenever they are scouting or scoring pests and diseases they refer to the booklet guidance. It has got easy and simple pics to follow and well explained version of each illustrations.
 
“This has made it easier to distinguish diseases that look alike. So, our scouting, scoring and data recoding on pests and diseases has been easy and the booklet has improved our technicians’ knowledge on soybeans and related aspects. We use it as a field tool all the time.”
 
“Version 2 of the book is most welcome!”


– Dennis Banda, Pyxus International, Malawi
(Photos: Dennis Banda and his Field Guide)  

Read Full Post »

EurekAlert

NEWS RELEASE 6-JAN-2021

Researchers discover how a bio-pesticide works against spider mites

TOKYO UNIVERSITY OF AGRICULTURE AND TECHNOLOGY

Research NewsSHARE PRINT E-MAILVolume 90% 

VIDEO: THE LARVA ROTATES IN THE SPHERICAL EGG TO CUT THE CHORION FOR HATCHING; 32× ACCELERATED. view more 

CREDIT: TAKESHI SUZUKI, TUAT. THIS WAS PUBLISHED IN ENG LIFE SCI. 2020;20:525-534

Scientists have uncovered why a food-ingredient-based pesticide made from safflower and cottonseed oils is effective against two-spotted spider mites that attack over a thousand species of plants while sparing the mites’ natural predators.

An international team of scientists has uncovered how a bio-pesticide works against spider mites while sparing their natural predators.

The findings, published in the journal Engineering in Life Sciences on October 7, 2020, could present farmers and gardeners with an eco-friendly alternative to synthetic pesticides.

Food ingredients have long been used as alternative pesticides against arthropod pests, such as insects, ticks, and mites, because they tend to be less toxic to mammals and pose less impact to the environment. The way bio-pesticides work – often through physical properties instead of chemical ones – also reduces the likelihood that the targeted pest will develop resistance to the pesticide, in turn reducing the need to use greater quantities of the pesticide or develop new ones.

One such bio-pesticide, made from safflower and cottonseed oils–which takes the brand name Suffoil–has been known to be effective against two-spotted spider mites (Tetranychus urticae), a species of arachnid that attacks more than 1,100 species of plants. Suffoil has no effect on another species of mite (Neoseiulus californicus) that naturally preys on the spider mite.

A spider mite normally hatches by cutting the eggshell, or “chorion,” with its appendages as it rotates in the egg. The rotation in turn helps it cut more of the chorion and eases hatching. The spider mite embryo also uses silk threads surrounding the eggs, woven by its parent to house the eggs on the underside of leaves, which may act as leverage to aid this rotation.

To understand how Suffoil works against spider mites, the researchers dipped spider mite eggs in Suffoil and examined them using powerful microscopes. They also used spider mite eggs dipped in water as a control group.

They found that Suffoil partly covered the surface of spider mite eggs and the surrounding silk threads. More importantly, they observed that the embryonic rotational movement essential for hatching was absent or stopped in the Suffoil-covered eggs. It appears that the oil seeps into the eggs through the cut chorion, making the inside too slick for the embryo to rotate, thus preventing the embryo from hatching properly.

“The bio-pesticide works by preventing the spider mite embryo from rotating within its eggshell for hatching,” said Takeshi Suzuki, a bio-engineer at Tokyo University of Agriculture and Technology (TUAT) and senior author of the study.

“It may also weaken the toughness of silk threads and reduce the anchoring effect of the egg on the substrate,” said Suzuki.

The findings also offer an explanation as to why Suffoil has no effect on the spider mites’ natural predators – they don’t use rotation to hatch out of their eggs. This means that Suffoil may be used in conjunction with the spider mites’ natural predators.

###

Other contributors include Naoki Takeda, Ayumi Takata, Yuka Arai, Kazuhiro Sasaya, Shimpei Noyama and Noureldin Abuelfadl Ghazy, all affiliated with TUAT, Shigekazu Wakisaka at OAT Agrio Co., Ltd., and Dagmar Voigt at Technische Universität Dresden.

This work was supported by JSPS KAKENHI, Grant/Award Number: 18H02203; JSPS Invitational Fellowships for Research in Japan, Grant/Award Number: L19542; Equal Opportunities Support of the School of Science at the Technische Universität of Dresden, Germany

For more information about the Suzuki laboratory, please visit http://web.tuat.ac.jp/~tszk/

Original publication:

Naoki Takeda Ayumi Takata Yuka Arai Kazuhiro Sasaya Shimpei Noyama Shigekazu Wakisaka Noureldin Abuelfadl Ghazy Dagmar Voigt Takeshi Suzuki. A vegetable oil-based biopesticide with ovicidal activity against the two-spotted spider mite, Tetranychus urticae Koch. Eng Life Sci. 2020;20:525-534. https://doi.org/10.1002/elsc.202000042

About Tokyo University of Agriculture and Technology (TUAT):

TUAT is a distinguished university in Japan dedicated to science and technology. TUAT focuses on agriculture and engineering that form the foundation of industry, and promotes education and research fields that incorporate them. Boasting a history of over 140 years since our founding in 1874, TUAT continues to boldly take on new challenges and steadily promote fields. With high ethics, TUAT fulfills social responsibility in the capacity of transmitting science and technology information towards the construction of a sustainable society where both human beings and nature can thrive in a symbiotic relationship. For more information, please visit http://www.tuat.ac.jp/en/.

Contact:

Takeshi Suzuki, PhD
Associate Professor
Graduate School of Bio-Applications and Systems Engineering
Tokyo University of Agriculture and Technology (TUAT), Japan
tszk@cc.tuat.ac.jp

Read Full Post »

WEMA maize shows promising resistance to destructive fall armyworm

Source: Ghana|Myjoyonline.com | Joseph Opoku-Gakpo | Joy News
Date: 26-04-2018 Time: 03:04:03:pm

Scientists have observed unexpected benefits in Mozambique’s Water Efficient Maize for Africa (WEMA) field trials that could well be a game changer in efforts to ensure Africa’s food security.

Though the maize varieties were genetically engineered to withstand drought and the vicious stem borer pest, they’re also showing promising resistance to the destructive fall armyworm pest, which arrived on the African continent in 2016 and continues its devastating advance.

Early results from Mozambique indicate the genetically modified WEMA seeds can offer significant protection against insect pests — without the use of pesticides.

This has positive implications for the other nations that are developing WEMA varieties, including Tanzania, Uganda, Kenya, South Africa and Ethiopia.

 In Mozambique, the WEMA seeds are being tested on a 2.5-hectare confined field trial site at Chokwe in the Gaza Province, some three hours’ drive from the capital Maputo.

Ordinary local maize varieties, which are conventional, and the WEMA seeds, which are transgenic (GM), were planted last year to provide comparisons, and the results have exceeded the expectation of scientists working on the project.

No pesticides or insecticides were applied at any point in time in the life cycle of any of the plants. Four weeks after sowing the seeds, scientists analyzed the level of infestation by fall armyworm and other pests in the maize fields.

 “The leaf damage is higher in the conventional material than the transgenic one,” Dr Pedro Fato, the plant breeder in charge of the WEMA project, told Joy news during a visit to the field trial site.

“Here we have a combination of insect pressure from stem borer and fall armyworm. There was more than 30 percent [difference] on yield between the conventional and the transgenic, which means WEMA protects about 30 percent of the yield. The WEMA material shows resistance to both insects,” he noted.

The results are important because maize is a major staple in Africa, consumed by more than 300 million people. But the stem borer is a major pest that destroys maize by eating through the plants, leaving them struggling to survive. In many countries, fall armyworm is proving to be equally destructive.

Currently, farmers try to control these pests through the use of pesticides. Farmers in Mozambique say they have to spend a lot of money on pesticides, and they fear using the products could endanger their health.

“When I plant maize, pests attack them. I use pesticides to stop them,” explained Armahdo Bule, 59-year old farmer. “I know that using the pesticides without personal protection could give me diseases. I know that using pesticides is not good because it could give you problems. But we still use them,” he added

The pests also greatly reduce crop yields. “Stem borer is a biotic stress that Mozambique is concerned about, especially in this [Chokwe] area where there is a lot of heat,” Fato said. “It occurs throughout the country and sometimes causes yield loss of more than 40 percent.”

Further compounding the problem of pest attacks is the worsening weather. “Drought is another big challenge we farmers have to deal with repeatedly,” said Tabusa Arije, president of the local farmers association.

“The way the climate is changing has brought a lot of problems. Last year, we planted beans in July, but we didn’t make anything because the rain didn’t come and the temperature was high,” he noted.

Officials managing irrigation services in the country are equally concerned, saying the drought problem has gotten worse recently and led farmers into debt situations.

“There was a bad drought in 2016 and there was no water in the irrigation canals,” said Soares Almeida Xerinda, board chairman of the government irrigation organization Hydraulics of Chokwe.

“The impact was very bad because the farmers lost the crops that they have… Some farmers work with the banks to get inputs including seeds and fertilizers but until now, they still face the consequence of the drought.”

To address the problem facing maize, the African Agricultural Technology Foundation (AATF) launched the WEMA project, a public-private initiative that aims to produce conventional and genetically modified maize resistant to drought and pests.

The WEMA varieties are being developed through a collaboration between the International Maize and Wheat Improvement Center (CIMMYT) and government research institutions in six African nations using gene technology donated by Monsanto.

Since the resulting seeds are royalty-free, local seed companies can make them available to smallholder farmers at affordable prices.

“The project aims to develop and avail to farmers drought-tolerant and insect-protected maize varieties using a range of approaches, including conventional plant breeding and genetic modification,” said Dr Denis Kyetere, AATF executive director.

“These varieties will improve yields under moderate drought and protect maize from insect-pest damage,” he said.

Conventional WEMA varieties already have been introduced onto the market in target countries, except Ethiopia, which is currently testing the conventional varieties and preparing for drought-tolerant and insect-resistant (Bt) genetically modified maize confined field trials.

In 2016, South Africa became the first project country to commercialize Bt maize for use by smallholder farmers. Mozambique hopes to release the WEMA maize as the country’s first genetically modified organism.

The scientists are excited to discover that the Bt WEMA maize is also showing partial, but significant resistance to the fall armyworm, which has already spread to almost 30 African countries, destroying maize and other crops.

The pests are especially destructive because they don’t respond easily to pesticide applications and reproduce very rapidly.

In Mozambique alone, between 282,000 and 712,000 tonnes of maize were lost to the fall armyworm last year, costing the country’s economy between $83.8 and $208.7 million.

According to a report by the United Kingdom-based Center for Agriculture and Biosciences International (CABI) on the potential impact of the fall armyworm pests in Africa, which was commissioned by the UK Department for International Development (DFID).

Fato said the additional resistance to fall armyworm is good news for Mozambique’s agricultural sector, although that was not the intent of the research work.

“To control stem borer and fall armyworm, the farmers use a lot of insecticides and the cost of insecticide is higher particularly for the fall armyworm. So if you can produce maize that doesn’t need any protection in terms of insecticide, that will help the farmers a lot, in terms of yield.”

Farmers in the vicinity have already visited the WEMA fields and are excited about what they saw. “WEMA is providing solutions for problems and will increase productivity,” said Armahdo Bule.

“WEMA is welcoming because it will help us deal with diseases and drought,” said farm leader Tabusa Arije. “We are waiting eagerly to get the seeds.

“We are teaching ourselves about the seeds, how to apply pesticides and ensuring technology transfer with the hope that tomorrow, with WEMA varieties, things will be okay.”

This is the second — and perhaps last — of the confined field trials for insect resistance trait in Mozambique. Later this year, some of the varieties will be tested for their ability to withstand drought. Fato expects a smooth process that will eventually allow the WEMA varieties to enter the market and reach the farmers.

“In Mozambique, the regulation is in place,” he explained. “And that is why we certain we shall be able to plant these first transgenic materials. I hope that other crops will follow. The regulation is really conducive to GMO technology development.”

Soares Almeida Xerinda, the irrigation company official, agreed. “The WEMA variety will be a very important product because when you get involved in agriculture, you will always have a drought.

“Even if you have an irrigation system, you can always save water. Water is not in abundance. If you can save the water, you can use it for a long time including when you have a drought. The WEMA project is a good initiative.”

 

Share this story

Read Full Post »

 

Dear Colleague 

We are now less than 6 months from the start of the XV International Congress of Acarology 2018 (XV ICA 2018) at Swandor Hotels & Resorts Topkapi Palace in Antalya, Turkey from 2-8 September.

Please note that the deadline for the submission of abstracts and bids for staging XVI ICA 2022 is Friday, 16 March, only 2 days from today. To submit, go to the congress website at here and follow the prompts. The details of four symposiums and their organisers are also listed on the website.

The congress website also has all the up-to date congress details, including registration and accommodation. You are encouraged to make your arrangements to take advantage of ‘early bird’ prices.

Please also forward this email to colleagues who may be interested in attending.

Best wishes and see you in September in Antalya!

On behalf of the Organizing Committee

Sebahat K. Ozman-Sullivan
President
XV ICA 2018

Read Full Post »

spider mites (2)

Dear Colleague

We are now just 6 months from the start of the XV International Congress of Acarology 2018 (XV ICA 2018) at Swandor Hotels & Resorts Topkapi Palace in Antalya, Turkey from 2-8 September.

The Organising Committee has received numerous requests to extend the abstract submission deadline. In response, the deadline for the submission of abstracts and bids for staging XVI ICA 2022 has been extended to Friday, 16 March. To submit, go to the congress website at http://www.acarology.org/ica/ica2018/ and follow the prompts. Please note that the details of four symposiums and their organisers are also listed on the website.

The congress website also has all the up-to date congress details, including registration and accommodation. You are encouraged to make your arrangements to take advantage of ‘early bird’ prices.

Please also forward this email to colleagues who may be interested in attending.

Best wishes and see you in September in Antalya!

On behalf of the Organizing Committee

Prof. Dr. Sebahat K. Ozman-Sullivan
President, XV ICA 2018

Email: ica2018turkey@gmail.com 

 

 

Read Full Post »

spider mites (2)

Dear Colleague

We are now just 6 full months from the start of the XV International Congress of Acarology (XV ICA2018) at Swandor Hotels & Resorts Topkapi Palace in Antalya, Turkey from 2-8 September, 2018.

Please note that the deadline of 1 March for submitting abstracts is fast approaching. The same deadline applies to bids to stage ICA 2022. To submit, go to the congress website at http://www.acarology.org/ica/ica2018/ and follow the prompts.

The congress website also has all the up-to-date congress details, including registration and accommodation options.

As a special request, please forward this email to colleagues who may be interested in attending.

Best wishes and see you in September in Antalya!

On behalf of the Organizing Committee

Prof. Dr. Sebahat K. Ozman-Sullivan
President,

ICA 2018 <ica2018turkey@gmail.com>

 

Read Full Post »

Dear Colleague

The Local Organising Committee for the XV International Congress of Acarology 2018 from 2-8 September in Antalya, Turkey extends its best wishes to you and family for 2018.

We are now just 8 months from the start of the congress at the Swandor Hotels & Resorts Topkapı Palace. The congress website at http://www.acarology.org/ica/ica2018/ has all the up-to date congress details, including topics, registration and accommodation. You are encouraged to make your arrangements to take advantage of ‘early bird’ prices.

To participate in the currently listed symposia, ‘Ticks and tick borne-diseases’ and ‘Parasitic and free living mites of medical and veterinary importance’, visit the website and click on ‘Symposia’ for the contact details of the organisers.

Please note that the deadline for proposals for symposia and seminars has been extended to 1 February, 2018 and that the deadlines for both abstract submission and bids for staging XVI ICA 2022 are 1 March, 2018.

For congress related enquiries, please contact kongre@bilkonturizm.com.tr and for scientific matters, ica2018turkey@gmail.com

See you next September in Antalya!

All the best

On behalf of the Organizing Committee
Prof. Dr. Sebahat K. Ozman-Sullivan
President, XV ICA 2018

 

 

Read Full Post »

Dear Colleagues

We are now just over 9 months from the start of the XV International Congress of Acarology (XV ICA2018) which will be staged from 2-8 September, 2018 in Antalya, Turkey (http://www.acarology.org/ica/ica2018/).

As the countdown continues, we are now just 1 month from the deadline for proposals for symposia and seminars in the following areas:

  • Taxonomy and systematics
  • Evolution and phylogeny
  • Ecology and behavior of mites
  • Ecology and behavior of ticks
  • Invasive species and biosecurity
  • Chemical control and resistance
  • Alternative pesticides
  • Biological control
  • Integrated pest management
  • Biodiversity
  • Dispersal of mites and ticks
  • Population dynamics
  • Agricultural acarology
  • Soil acarology
  • Aquatic acarology
  • Veterinary acarology
  • Medical acarology

If you are interested in convening a symposium or seminar, please contact the science secretary at ica2018turkey@gmail.com by 22 December, 2017 to register the topic and get the process underway.

Please check regularly for all updates on the congress website: http://www.acarology.org/ica/ica2018/

All the best

On behalf of the Organizing Committee
Prof. Dr. Sebahat K. Ozman-Sullivan
President, XV ICA 2018

Read Full Post »

 

Broad mites in ornamental crops – Part 1: Challenges and treatments

Broad mites can be controlled using insecticides or biological control.

Photo 1. Broad mite. Photo by Bruce Watt, University of Main, Bugwood.org.

Photo 1. Broad mite. Photo by Bruce Watt, University of Main, Bugwood.org.

 

Western flower thrips and aphids have long been the most challenging insect pests in greenhouses. More recently, broad mites (Photo 1) have been posing a more serious threat for greenhouse growers. Broad mites are a potential threat to some of the most important Michigan floriculture crops. According to my previous article, “Attention scouts: Crops that are insect “magnets” in the greenhouse,” the top 10 plants that are attractive to broad mites are New Guinea impatiens (Photo 2), zonal geraniums, Thunbergia, Torenia, verbena, Rieger begonias, Scaevola, angel wing begonias, ivy geranium and buddleia.

So, why are broad mites so concerning? Broad mites are concerning because they are microscopic and are very difficult to see with the common 5x to 10x hand lens. You must send samples to a diagnostic lab or contact your local Michigan State University Extension floriculture educator for a positive diagnosis.

In addition, greenhouse scouts and growers usually notice the plant damage after the populations are already very high and the crops are unsalable. Often times, the damage to the upper leaves near the apical meristem is only noticeable 20 to 30 days after they began infesting the crop.

The greatest populations of broad mites when scouting crops are often not on the plants with the greatest amount of damage. By the time the damage is significant, broad mites have moved on to the neighboring plants with “fresh, new, tasty” tissue. Therefore, greenhouse scouts should actually sample the plants adjacent to those with heavy feeding damage.

broad mite damage

Photo 2. Broad mite damage on New Guinea Impatiens. Photo by Heidi Lindberg, MSU Extension.

The following products are recommendedfor broad mites: Avid, Akari, Judo, Pylon, SanMite, and 2% horticultural oil. For growers interested in using biological control, the predatory mite, Amblyseius swirskii (Photo 3), has been shown to be effective against broad mites. However, cuttings and propagules must be free of pesticide residue in order to effectively use biological control for broad mites. Contact your young plant or cutting supplier to learn about the plant’s pesticide history.

a. swirskii

Photo 3. Amblyseius swirskii. Photo by Evergreen Growers Supply.

One study in Belgium showed that using A. swirskii is actually more effective than the standard chemical treatment (Abamectin) in Belgium. When researchers released broad mites (P. latus) on Rhododendron plants, all of the following treatments were more effective than the weekly abamectin spray:

  • Three weekly releases of A. swirskii beginning in April
  • One release of A. swirskii during April
  • One release of A. swirskii during May
  • One release of A. swirskii with the additional food source Artemia during April
  • One release of A. swirskii with the additional food source Artemia during May

Greenhouse growers who are not getting adequate control of broad mites may want to consider a weekly release of A. swirskii. Contact your local biological control specialist or consultant to develop a strategy for preventative broad mite control.

For more information on the location of broad mites in the crop and about an intensive sampling program, read “Broad mites in ornamental crops – Part 2: Scouting and sampling.

The study referenced in this article is: Gobin, B., E. Pauwels, E. Mechant, and J. Audenaert. 2017. Integrated control of broad mites in ornamental plants under variable greenhouse conditions. IOBC-WPRS Bulletin Vol. 124: 125-130.

Related Articles

Read Full Post »

Exclusive to Western Farm Press

What is in this article?:

  • There has never been a better time to implement integrated pest management for spider mites in almonds, says entomologist David Haviland of the University of California.
  • UC researchers have developed presence-absence monitoring thresholds to help almond growers understand exactly when they need to pull the trigger on treatment.

Feeding damage by spider mites to almond leaves. Photo by David Haviland.

 

There has never been a better time to implement integrated pest management (IPM)) for spider mites in almonds, according to entomology farm advisor David Haviland, University of California Cooperative Extension, Kern County.

A bevy of new reduced-risk, selective miticides have come on the market in recent years, and UC researchers have developed presence-absence monitoring thresholds to help almond growers understand exactly when they need to pull the trigger on treatment.

Haviland told a packed house at The Almond Conference last December that these new products have different modes of action, are easy on beneficial insects, and all are effective in the control of spider mites.

Despite this fact, pesticide use reports in recent years show a distinct trend toward preventive, prophylactic mite treatments in almonds. Perhaps growers are piggybacking onto early-season applications for other pests, or perhaps they are trying to stay ahead of mites to prevent flare-ups later in the season.

But Haviland said growers who spray at the first sign of mites might, in fact, be setting themselves up for problems later.

Food source

It is important for some mites to be present in the orchard early season to provide a food source for beneficials including six-spotted thrips, which, if allowed to thrive in the orchard, are an excellent natural biological control for spider mites. Allowing biocontrol organisms to get established, in fact, can reduce the risk of spider mite explosions later in the season.

Products containing abamectin, while inexpensive and effective on mites, are also known to kill six-spotted thrips and should be used cautiously if this predator is present in the orchard. In addition, pyrethroids and other broad-spectrum insecticides should be avoided until hull split unless they are absolutely necessary for leaffooted bug or other sporadic pests when no alternatives exist.

Read Full Post »

FreshPlaza
http://www.freshplaza.com/article/132579/Spain-New-pest-threatens-Valencian-producers

valencia orange-11

The organisation AVA-Asaja has issued a statement reporting the presence of a new parasite in Valencia’s main citrus producing regions, which so far had only been detected in Andalusia and Alicante, and which causes damages to leaves and silvery spots on the fruit that prevent commercialisation.

It is a parasitic mite called Texas (Eutetranychus banksi), which was detected this summer and especially during the autumn months in some orange plantations in the county of La Safor. For their part, the technical services of AVA-Asaja have confirmed a surge in the Texas mite populations in other citrus producing areas, such as Ribera, Camp de Morvedre, L’Horta, Camp de Turia or Hoya de Buñol.

This parasite causes considerable damage to both leaves and the fruit. It leads to discolouring and deterioration of the leaves, causing them to fall in some cases, while the fruit is affected by silvery spots that can even prevent it from being sold in the fresh market.

“In addition to the losses that it will cause on the crops, it entails an extra cost for the producers affected, who will have to invest in acaricide treatments,” lamented the president of AVA-Asaja, Cristóbal Aguado.

In the Iberian Peninsula, the Texas mite was first detected in Portugal in 1999. Since then, the parasite has been spreading slowly. In Spain, it appeared for the first time in 2001 in several citrus plantations in the province of Huelva.

E banksii
Source: Valencia Fruits

Publication date: 12/16/2014

 

 

e_banks1

Read Full Post »

Older Posts »