Archive for the ‘Pest diagnostics’ Category

Plantwise National Data Centre established in Pakistan

The plant health information collected through Plantwise plant clinics is a valuable resource. The Department of Plant Protection has set up a new National Data Centre in Karachi to collate clinic data. Plant health partners, stakeholders and other knowledge delivery systems will be able to use this information to make evidence-based decisions that strengthen plant health systems.

Farmer in Pakistan
Farmer in Pakistan

Techniques for managing data have become essential and are now common in business and services. With this in mind, Plantwise has now established the first-ever National Data Centre in Karachi, for the assimilation of Plantwise data in Pakistan. This robust management system will collate data coming from more than 1,000 plant clinics throughout the country.

National Data Centre training

The Plantwise programme has provided data management training to plant clinic staff in order to ensure the long-term collection of data. These staff members include local implementing organisation such as agriculture extension departments in each of the Pakistan provinces. 

As well as consolidating all the data and information, the National Data Centre aims to offer central hosting and managed services for all Government institutions including the Plantwise programme’s partners.

Data-driven decision-making

The new data centre will enable reliable, efficient and secure access to plant clinics’ plant health data, meaning partner organisations will no longer be required to host their own applications. In addition, partners will receive quicker and more secure networking facilities that will allow them to better showcase their services to end customers.

The National Data Centre will demonstrate how data-driven decision-making is essential for increasing production and improving quality in agriculture.

National Data Centre, Karachi
Setting up the National Data Centre, Karachi

The aim of Planwise was to increase food security and improve rural livelihoods by reducing crop losses. This has been achieved by establishing sustainable networks of local plant clinics, run by trained plant doctors, where farmers receive practical plant health advice. Data collected from these clinics allow for better response and monitoring especially in case of new pest outbreaks, and plant health data is made available for decision making while it is still relevant.

Consolidating data – National Data Centre

It was evident that the data collected from the provincial plant clinics in Pakistan needed to be securely stored with proper access controls.  Many of the individual government organisations, such as agricultural extension departments, had set up their own servers, or rather data centres, with high human resource and operational costs.

Therefore, it was considered vital that CABI, in consultation with its LIOI’s, establish a National Data Centre to reduce the cost of data management and increase the value of the clinics’ data. The National Data Centre will also provide the opportunity for cross-validation and high data security.

Help inform plant health services

The plant clinic data coming into the National Data Centre can be used to inform plant health services in various ways. For instance, this data can help to identify new and emerging plant health problems and act as an early warning system to the regulatory bodies, such as the Department of Plant Protection, that are responsible for pest and disease surveillance and response.

Further reading


CABI’s new global programme, PlantwisePlus, will support low and lower-middle-income countries to predict, prepare themselves for and prevent plant health threats in a changing climate – reducing crop losses and empowering farmers to increase income, food security and food safety by producing more and higher quality food.

PlantwisePlus will therefore focus on (a) strengthening detection of and response to pest outbreaks; (b) providing public and private agricultural service providers with better digital advisory tools to support farmers in sustainable crop management; (c) enhancing the availability of nature-positive and low-risk plant protection products to reduce reliance on high-risk farm inputs; (d) increasing consumer demand for and supply to local markets of safer, higher quality and locally produced food.PakistanPlantwisedata managementAgriculture and International Development

Read Full Post »

Crop leaf disease identification based on ensemble classification

Livestock and horticulture are well-known contributors to the global economy, particularly in countries where farming is the sole motivation for income. Yet, it is regretful that infection degeneration has affected this. Vegetables are a significant source of power for people and animals. Leaves and stems are the most common way for plants to interact with the surroundings. As a consequence, researchers and educators are responsible for investigating the problem and developing ways for recognizing disease-infected leaves.

Growers everywhere across the world will be able to take immediate action to avoid their produce from getting heavily affected, so sparing the globe and themselves from a potential global recession. Because manually diagnosing ailments might not have been the ideal solution, a mechanical methodology for recognizing leaf ailments could benefit the agricultural sector while also enhancing crop output. The goal of this research is to evaluate classification outcomes by combining composite classification with hybrid Law’s mask, LBP, and GLCM.

The proposed method illustrates that a group of classifiers can surpass individual classifiers. The attributes employed are also vital in attaining the best findings because ensemble classification has demonstrated to be much more reliable.

Read the complete research at www.researchgate.net.

Kaur, Navneet & V, Devendran & Verma, Sahil. (2021). Crop leaf disease identification based on ensemble classification. 

Publication date: Fri 10 Dec 2021

Read Full Post »

A Budding Problem: Managing Corn Earworm in Commercial Hemp Production


The corn earworm (Helicoverpa zea) is an emerging pest of commercial hemp production throughout the U.S. Boring through stalks and feeding on reproductive structures, this pest presents several management challenges for hemp producers. While integrated pest management strategies for more traditional agricultural crops are established, much work is still needed to develop effective IPM for the corn earworm in hemp. Shown here is a corn earworm larva feeding on a hemp plant flower bud. (Photo originally published in Britt et al 2021, Journal of Integrated Pest Management)

By David Coyle, Ph.D.

David Coyle, Ph.D.

Cheech and Chong. The Big Lebowski. Seth Rogen. These Hollywood legends helped thrust Cannabis sativa into modern-day pop culture, making it simultaneously famous and infamous. And while the topic of C. sativa tends to elicit a range of emotions and opinions, there is no debating the fact this plant has many, many attributes and qualities.

Cannabis sativa is an annual herbaceous crop native to east Asia but is now grown worldwide and can be cultivated for a variety of purposes. Cannabis sativa is known colloquially as hemp or marijuana; these are different cultivars of the same species. The difference between hemp and marijuana is purely chemical: marijuana has a high THC (tetrahydrocannabinol, aka the intoxicating part) content, whereas the THC content in hemp, by definition, must be less than 0.3 percent. There are also some physical differences, as marijuana and hemp grown for cannabinoids have more of a bushy, horticultural crop look while hemp grown for grain or fiber appears more like a row crop, growing from a tall singular stalk.

Hemp became a legal crop with the passage of the 2018 Farm Bill (the Farm Bill is now called the Plant Protection Act, or PPA 7721). This action was significant, as it was the first time hemp was legally differentiated from marijuana. While the law placed restrictions on its production and use, the legalization of industrial hemp (as it is known) led to several pilot production programs being initiated.

Since industrial hemp had not been cultivated in the U.S. before, pest management in this new crop was an area in dire need of research. Several well-known pests present challenges to hemp cultivation, including the corn earworm (Helicoverpa zea). An article published in September in the Journal of Integrated Pest Management highlights what we do and don’t know about H. zea management in industrial hemp. I spoke with the lead author, Kadie Britt, Ph.D., postdoctoral scholar at the University of California, Riverside, about challenges and opportunities associated with this well-known corn (and now hemp) pest.

Coyle: Do you think hemp will take off? I mean, do we even have the infrastructure to support this industry?

The corn earworm (Helicoverpa zea) is an emerging pest of commercial hemp production throughout the U.S. Boring through stalks and feeding on reproductive structures, this pest presents several management challenges for hemp producers. While integrated pest management strategies for more traditional agricultural crops are established, much work is still needed to develop effective IPM for the corn earworm in hemp. Shown here is a corn earworm larva that has tunneled into a hemp plant stem. (Photo originally published in Britt et al 2021, Journal of Integrated Pest Management)

Britt: Yes and no. There is a market, but there’s already too much planted acreage, and the market is saturated. 2019 was a big year after legalization in 2018, and some growers still have that material in their barns as of summer 2021. Hemp is very useful, and there’s a very positive long-term future with this crop in terms of grain and fiber. The fiber can be used for many things, including plastics, clothes, rope, and a bunch of other things. The grain can be used as a food (think Whole Foods fancy spices section) and has very beneficial fatty acids. Unfortunately, we still see too much cannabinoid and not enough grain or fiber acreage.

Regarding management, is it fair to say there are more questions than answers at this point?

Yes! Every answer seems to lead to more questions. Can we sample for pests in hemp as we do in other row crops? Yes, sampling is similar, but with nuances. For instance, pheromone traps don’t seem to be effective, so we’ll have to develop something else. The takeaway is that it’s difficult to rely solely on chemical control, and the best thing we can do or recommend at this point is to watch for eggs and larvae and to initiate spray applications with a product legal for use in hemp. Weekly spraying can be effective but targets only corn earworm—a more IPM-friendly approach is needed, but first we need to know more about the system.

What are the biggest management challenges for industrial hemp?

There are so many! Pest management is a huge challenge, but growers need to be able to successfully produce the crop first. Right now, there’s a lack of infrastructure for the crop as a whole. Industrial hemp is a legitimate alternative to many products; anything from fabric to plastic can be made from hemp. Some companies are building processing facilities, machinery, and all the other infrastructure necessary for a new crop. Having properly labeled pesticides available is a challenge, as industrial hemp probably won’t garner the attention of huge chemical companies, but smaller, newer biopesticide companies may be more willing, as will those that focus on specialty crops.

Any final thoughts?

Yes, the industry is new and emerging, and we have to realize that federal legalization of high-THC cannabis will likely happen at one point. The work we do now will only help prepare us for that time. Cannabis is here to stay, and pest susceptibility greatly increases when the crop is grown in a monoculture type of production. Commercial acreages are different than backyard growing operations. Any information we get now will only help future C. sativa growers, regardless of the final product.

Read More

Pest Management Needs and Limitations for Corn Earworm (Lepidoptera: Noctuidae), an Emergent Key Pest of Hemp in the United States

Journal of Integrated Pest Management

David Coyle, Ph.D., is an assistant professor in the Department of Forestry and Environmental Conservation at Clemson University. Twitter/Instagram/TikTok: @drdavecoyle. Email: dcoyle@clemson.edu.


IPM in Hemp: Managing Pests in a “New” Crop

September 5, 2019

How Climate Change May Accelerate Corn Earworm’s Resistance to Bt Crops

June 9, 2017

Rice Root Aphid: An Insect Surprise on Indoor-Grown Cannabis

July 24, 2020 Research NewsCannabis sativaCorn EarwormDave CoyleHelicoverpa zeahempintegrated pest managementJournal of Integrated Pest ManagementKadie Britt

Read Full Post »

Saturday, 27 November 2021 17:37:00

Grahame Jackson posted a new submission ‘News from PestNet’


News from PestNet

Hi Everyone

We are excited to tell you that PestNet has joined forces with the Pacific Pests, Pathogens & Weeds app (compiled by PestNet). It seemed sensible to put these two Pestnet endeavours together. Some time ago, we mentioned that the website had been redesigned to reflect the changes; now we have completed the amalgamation with new mobile apps. 

You can see the changes if you visit the website here. And you can download the new mobile apps by searching for “PestNet” or “Pacific Pests, Pathogens & Weeds” from the Google and Apple stores.

Hope you like the changes!

All the best

PestNet Moderators

Read Full Post »

Researchers develop new method to quickly diagnose bean viruses

Lim Chang-won Reporter(cwlim34@ajunews.com) | Posted : November 10, 2021, 08:30 | Updated : November 10, 2021, 08:30

[Courtesy of Gyeonggido Business & Science Accelerator]
SEOUL — Soybean virus diseases result in reduced yields and inferior quality. Polymerase chain reaction (PCR), a method used in molecular biology, has been widely used to diagnose bean viruses, but it takes up to two weeks to acquire results. South Korean researchers have developed an envelope protein screening method that can easily identify bean viruses.

The common mosaic virus is seed-borne and causes mosaic and lesions on foliage as well as blackened roots. The yellow mosaic virus is often associated with the presence of virus source plants, with symptoms consisting of leaf mosaic formed by contrasting yellow or green mosaic areas.

After dropping a sample collected by scratching the skin of a bean into the diagnostic kit, it will be possible to check the results in five minutes. It enabled the selection of mini antibody candidates without a protein purification process, the bio-center of Gyeonggido Business & Science Accelerator (GBSA) said, adding the commercialization of diagnostic devices based on GBSA’s technology would replace imports.

The center said its research team proposed a new platform for the production of plant virus diagnostic kits using the combined module of SpyTag (peptide) and SpyCatcher (protein) for the binding of antigens and coat proteins. Using SpyTag and SpyCatcher, bioconjugation can be achieved between two recombinant proteins that would otherwise be restrictive or impossible with the traditional direct genetic fusion between the two proteins.

“Through continuous research and development, it has become possible to diagnose the virus in the early stages and preemptively block it,” an unnamed GBSA official said in a statement. “We will contribute to stable agricultural production by reducing economic losses caused by crop virus damage.” The study was conducted jointly with researchers from Kyungpook National University, the Rural Development Administration and the Ajou University College of Medicine.

Lim Chang-won ReporterLim Chang-won Reporteremail : cwlim34@ajunews.com© Aju Business Daily & http://www.ajunews.com Copyright: All materials on this site may not be reproduced, distributed, transmitted, displayed, published or broadcast without the authorization from the Aju News Corporation.

Read Full Post »

How to diagnose a pest problem using the diagnostic tool

The Plantwise Knowledge Bank brings together plant health information from across the world. It includes a diagnostic tool, factsheet library, pesticide lists and pest alerts. For those seeking to diagnose a pest problem, the Plantwise Knowledge Bank’s Pest Diagnostic Tool is particularly useful, providing information to help identify the symptoms observed on a crop.

Tuta Absoluta © CABI

Diagnosing a pest problem

To be able to provide effective solutions to a plant health problem, it’s first important to diagnose a pest problem accurately. The diagnostic tool allows you to diagnose a crop problem through the symptoms observed and the part of the plant affected.

From the Plantwise Knowledge Bank home page, navigate to the diagnose a pest problem tile and click ‘identify a pest’.

Plantwise Knowledge Bank
Navigate to ‘Identify a pest’

Identify the pest problem

Once clicking on ‘identify a pest’, you are able to search by country or region from the drop-down list. The crop name is then typed into the search box and a list of suggested crops will appear to choose from.

Plantwise Knowledge Bank
Search by country and crop

Narrow down cause

The first step in narrowing down the cause of a plant health problem is to determine which part of the plant is affected by the pest. In some cases, several parts of the plant can be damaged, but to help diagnose the problem, the main part of the affected plant needs to be determined. The options provided in the tool include leaves, stems, whole plant, seeds, fruit, growing point, inflorescence, roots and vegetative organs.

Plantwise Knowledge Bank
Main part of affected plant selection

If the type of problem is already known it will help to narrow down your search further, otherwise a user would select ‘unsure’. The types of problems in the tool include mites, insects, fungi, nematodes and weeds.

The steps in the diagnostic tool mirror the plant clinic prescription form found on the data collection app.

Plantwise Knowledge Bank
Type of problem selection

Pest and disease results

Results from the diagnostic search are given as a list of possible pests or diseases, each with an image, and a link to a technical factsheet further describing the problem. The technical factsheet provides information on crop symptoms, preventative methods and effective solutions to the problem.

For further information on the pest or disease problem; the search tool on the Plantwise knowledge bank has over 15,000 pieces of content available for free.https://blog.plantwise.org/2021/08/12/what-is-the-plantwise-knowledge-bank/embed/#?secret=wMPC0G48cQ

Further reading

Contact us via email to share links to factsheets or any queries: plantwise@cabi.org

Visit the The Plantwise Knowledge BankPlantwise Knowledge Bankcrop healthdiagnostic searchdiagnostic supportplant healthCrop healthDevelopment communication and extension

Read Full Post »

Digital Engagement and Training Helps Increase Agro-Dealer and Farmer Knowledge on Integrated Pest Management in East Africa

twitter sharing button
facebook sharing button
email sharing button

Integrated Pest Management Innovation Lab

Aug 19, 2021

A group of people training with the Tanzanian Agricultural Research Institute (TARI)

This post is written by Sara Hendery, communications coordinator for the Feed the Future Innovation Lab for Integrated Pest Management

Given Tanzania’s diverse geographical landscape, it’s no surprise the country is among the world’s top 20 producers of vegetables. Nevertheless, farmers remain in search of ways to combat the pests and diseases that threaten crop yields every season.

Results of a survey conducted by Feed the Future Innovation Lab for Integrated Pest Management partners at the Tanzanian Agricultural Research Institute (TARI) show that the majority of Tanzanian farmers receive key knowledge on how to manage pests and disease not only from extension personnel, but often from agricultural supply dealers, or agro-dealers. While agro-dealers do carry valuable information, resources and inputs, the survey also shows that many agro-dealers have limited formal knowledge on vegetable production or protective measures for applying chemical pesticides.

To address these gaps, TARI began providing cohesive training to agro-dealers, farmers and extension officers on vegetable production and pest and disease management. Training covers such areas as Good Agricultural Practices (GAPs), Integrated Pest Management (IPM) and safe handling and use of agricultural inputs, including pesticides. Thus far, 500 participants have been trained in the Coast and Morogoro regions. The GAP training in particular helps farmers build capacity in reporting and record-keeping, assessing input quality and crop hygiene, and training in IPM provides information on bio- and botanical pesticides, pruning, developing seedlings in a nursery environment and how to apply pesticides with minimal body exposure.   

“Knowing that farmers receive their pest and disease management knowledge from agro-dealers provides us important insight into how to best reach farmers with up-to-date information,” said Dr. Fred Tairo, principal agricultural research officer at TARI-Mikocheni. “If we want farmers to adopt sustainable, climate-smart and productive inputs that might be outside of their typical use, an important pathway to reaching them is through the people that farmers already trust and are familiar with.” 

In a group of 69 agro-dealers surveyed, only 49 were registered and licensed to run agricultural shops. The 20 unregistered participants had received no formal training in crop production or pesticide safety and use, and most participants not only had no prior knowledge on how to dispose of expired pesticides, but did not sell bio-pesticides or chemical pesticide alternatives at their shops. Since registering as an agro-dealer can cost nearly $200, TARI is collaborating with the Tropical Pesticides Research Institute (TPRI), a regulatory authority for pesticides in Tanzania, to consider lowering the costs.  

TARI and the IPM Innovation Lab are increasing communication through digital platforms to reach more agricultural actors with safe and effective approaches to pest and disease management. A Kiswahili-based (Swahili) WhatsApp group named “Kilima cha Mboga kisasa,” or modern vegetable cultivation, currently shares information with 154 farmers, extension agents and agro-dealers in Tanzania who can use the app to cite crop threats and receive expert management guidance in return.

Participants post a picture or video of the crop problem for immediate diagnosis. Not only do agro-dealers in the group directly learn about farmers’ most pressing problems, but they can use the platform to market agri-inputs, including the IPM products they learn about through the platform. 

“Even if members of this group do not necessarily follow up with formal training we offer, this is a low-stakes knowledge-sharing space that they can be a part of and receive guidance from,” Tairo added. 

To increase access to information and inputs, the IPM Innovation Lab is also collaborating with Real IPM, a private company based in Kenya that develops low-cost biological and holistic crop solutions available in Kenya and Tanzania. In just one year, the company has provided training to thousands of farmers in seven counties in Kenya by targeting farmer groups, the majority of which are made up of women. Real IPM has developed training manuals on IPM, a WhatsApp group for crop health assistance and a free web portal for diagnosis and IPM recommendations of specific crop threats. 

“Our goal is to make IPM solutions more accessible,” said Ruth Murunde, research and development manager at Real IPM. “When you enter a pest or disease into our web portal, those images, diagnosis and IPM recommendations stay posted. We know that many farmers are experiencing similar issues to one another and collective action against crop threats is an effective way to combat them more long-term.”

While technology constraints remain — including smartphone, internet and electricity access — making learning spaces available for a range of crop production actors is critical to adoption of sustainable, effective farming solutions. 

Currently, the Real IPM database hosts over 7,000 participants and has collected over 200 infected crop images.

“The Real IPM technical team is actively working to support farmers by providing biopesticides as a solution for mitigating pests and diseases on vegetable crops to ensure sustainable agriculture for smallholder farmers,” added Murunde. “Our information networks help disseminate best practice methods for using those tools.”  

For more information on IPM training or Real IPM products, contact saraeh91@vt.edu.FILED UNDER:AGRICULTURAL PRODUCTIVITYEDUCATION AND EXTENSION



Using Integrated Pest Management to Reduce Pesticides and Increase Food Safety


Virginia Tech Taps Text Message Services to Assist Smallholder Farmers


Research Finds Protecting Pollinators is Critical For Food Security in Africa


Kenyan Farmers Find Hope in Fighting Fall Armyworm

Leave feedbackFollow Agrilinks:

Read Full Post »

Study on tomato leaf diseases classification based on leaf images

Tomato production can be greatly reduced due to various diseases, such as bacterial spot, early blight, and leaf mold. Rapid recognition and timely treatment of diseases can minimize tomato production loss. Nowadays, a large number of researchers (including different institutes, laboratories, and universities) have developed and examined various traditional machine learning (ML) and deep learning (DL) algorithms for plant disease classification.

However, through pass survey analysis, the team found that there are no studies comparing the classification performance of ML and DL for the tomato disease classification problem. The performance and outcomes of different traditional ML and DL (a subset of ML) methods may vary depending on the datasets used and the tasks to be solved. This study generally aimed to identify the most suitable ML/DL models for the PlantVillage tomato dataset and the tomato disease classification problem. For machine learning algorithm implementation, the team used different methods to extract disease features manually. In this study, the team extracted a total of 52 texture features using local binary pattern (LBP) and gray level co-occurrence matrix (GLCM) methods and 105 color features using color moment and color histogram methods. Among all the feature extraction methods, the COLOR+GLCM method obtained the best result.

By comparing the different methods, the team found that the metrics (accuracy, precision, recall, F1 score) of the tested deep learning networks (AlexNet, VGG16, ResNet34, EfficientNet-b0, and MobileNetV2) were all better than those of the measured machine learning algorithms (support vector machine (SVM), k-nearest neighbor (kNN), and random forest (RF)). Furthermore, the team found that, for the dataset and classification task, among the tested ML/DL algorithms, the ResNet34 network obtained the best results, with accuracy of 99.7%, precision of 99.6%, recall of 99.7%, and F1 score of 99.7%.

Read the complete research at www.researchgate.net.

Tan, Lijuan & Lu, Jinzhu & Jiang, Huanyu. (2021). Tomato Leaf Diseases Classification Based on Leaf Images: A Comparison between Classical Machine Learning and Deep Learning Methods. AgriEngineering. 3. 542-558. 10.3390/agriengineering3030035. 

Publication date: Mon 19 Jul 2021

Read Full Post »

About PestLens


Thursday, August 19, 2021 Notification

First detections of the tobamovirus Tomato brown rugose fruit virus (ToBRFV) in Switzerland, Austria, and Slovenia
Source: Hortidaily, Slovenia Times
Event:  Detection In June and July of 2021, the tobamovirus Tomato brown rugose fruit virus (ToBRFV) was detected in cultivated Solanum lycopersicum (tomato) plants in Switzerland and Austria. Additionally, molecular assays detected ToBRFV in a Capsicum annuum (pepper) seed lot in Slovenia. The infected seed lot was imported from the Czech Republic from seed originating from China. Some seeds from the infected lot were planted in Slovenia. Phytosanitary measures have been implemented in Switzerland, Austria, and Slovenia. These are the first detections of ToBRFV in Switzerland, Austria, and Slovenia. ToBRFV primarily infects S. lycopersicum and Capsicum spp. (pepper). ToBRFV has been reported from Egypt, Turkey, Israel, Jordan, China, and Mexico and has been detected in other parts of Europe and New Zealand. In the United States, ToBRFV has been detected in and eradicated from California. Tobamoviruses are transmitted mechanically and by seed, and ToBRFV can be transmitted by the bumble bee Bombus terrestris, which is not known to occur in the United States. The 2019 PPQ Prioritized Offshore Pest List includes ToBRFV as a pest of concern. References: Hortidaily. 2021. First report of Tomato brown rugose fruit virus in Austria and Switzerland. Hortidaily. August 9, 2021. Last accessed August 19, 2021, from https://www.hortidaily.com/article/9342639/first-report-of-tomato-brown-rugose-fruit-virus-in-austria-and-switzerland/. Slovenia Times. 2021. Tomato brown rugose fruit virus confirmed in Slovenia. Slovenia Times. August 13, 2021. Last accessed August 19, 2021, from https://sloveniatimes.com/tomato-brown-rugose-fruit-virus-confirmed-in-slovenia/.
Other PestLens articles about this pest:
First detections of the tobamovirus Tomato brown rugose fruit virus (ToBRFV) in Norway, Hungary, and Bulgaria
First detection of the tobamovirus Tomato brown rugose fruit virus (ToBRFV) in Malta
First detection of the tobamovirus Tomato brown rugose fruit virus in Belgium
First detection of the tobamovirus Tomato brown rugose fruit virus (ToBRFV) in New Zealand
Disinfection of Solanum lycopersicum (tomato) seeds from the tobamovirus Tomato brown rugose fruit virus (ToBRFV) If you have any questions or comments for us about this article, please e-mail us at pestlens@usda.gov or log into the PestLens web system and click on “Contact Us” to submit your feedback.

First report of Malaysian fruit fly, Bactrocera latifrons (Diptera: Tephritidae), in the Democratic Republic of the Congo
Source: EPPO Bulletin
Event:  New Location Recently, Malaysian fruit fly, Bactrocera latifrons (Diptera: Tephritidae), adults were observed emerging from postharvest Solanum aethiopicum (Ethiopian eggplant) fruits in the Democratic Republic of the Congo. This is the first report of B. latifrons in the Democratic Republic of the Congo. Bactrocera latifrons is primarily a pest of Solanaceae and Cucurbitaceae. Bactrocera latifrons has been reported from other parts of Africa, Iran, and Asia. In the United States, it has been detected in and eradicated from California and has been reported from Hawaii. References: Ndayizeye, L. and C. K. Balangaliza. 2021. First report of Bactrocera latifrons Hendel in the Democratic Republic of Congo. EPPO Bulletin DOI: 10.1111/ epp.12746. Last accessed August 19, 2021, from https://onlinelibrary.wiley.com/doi/10.1111/epp.12746.
Other PestLens articles about this pest:
Detection of Malaysian fruit fly, Bactrocera latifrons (Diptera: Tephritidae), in Italy
Assessment of Citrus sinensis (sweet orange) and C. reticulata (tangerine) as hosts of Malaysian fruit fly, Bactrocera latifrons, and melon fruit fly, B. cucurbitae (Diptera: Tephritidae)
New host records for Malaysian fruit fly, Bactrocera latifrons (Diptera: Tephritidae) If you have any questions or comments for us about this article, please e-mail us at pestlens@usda.gov or log into the PestLens web system and click on “Contact Us” to submit your feedback.

First report of the fungus Phaeoacremonium oleae (Sordariomycetes: Togniniales) in Italy
Source: Plant Disease
Event:  New Location From 2013 to 2019, cultivated Olea europaea (olive) plants in Italy exhibited shoot death, trunk and branch vascular discoloration, and wood necrosis. Morphological and molecular analyses, as well as fulfillment of Koch’s postulates, confirmed that the causal agent was the fungus Phaeoacremonium oleae (Sordariomycetes: Togniniales). This is the first report of P. oleae in Italy. Phaeoacremonium oleae infects O. europaea. Phaeoacremonium oleae has also been reported from South Africa and is not known to occur in the United States. References: Raimondo, M. L., F. Lops, and A. Carlucci. 2021. First report of Phaeoacremonium oleae and P. viticola associated with olive trunk diseases in Italy. Plant Disease DOI: 10.1094/PDIS-06-21-1198-PDN. Last accessed August 19, 2021, from https://apsjournals.apsnet.org/doi/pdf/10.1094/PDIS-06-21-1198-PDN. If you have any questions or comments for us about this article, please e-mail us at pestlens@usda.gov or log into the PestLens web system and click on “Contact Us” to submit your feedback.

Four new scale species described from Colombia
Source: Zoosystema
Event:  New Description/Identification A recent publication describes four new scale species, Newsteadia andreae (Hemiptera: Ortheziidae), Distichlicoccus takumasae (Hemiptera: Pseudococcidae), Paraputo nasai (Hemiptera: Pseudococcidae), and Pseudococcus luciae (Hemiptera: Pseudococcidae), collected from roots of Coffea arabica (coffee) plants in Colombia. References: Caballero, A. 2021. Four new scale insect species (Hemiptera: Coccomorpha) associated with coffee roots in Colombia, South America, with identification keys for genera Newsteadia Green, 1902, Distichlicoccus Ferris, 1950, and Paraputo Laing, 1929. Zoosystema 43(18):341-363. Last accessed August 19, 2021, from https://bioone.org/journals/zoosystema/volume-43/issue-18. If you have any questions or comments for us about this article, please e-mail us at pestlens@usda.gov or log into the PestLens web system and click on “Contact Us” to submit your feedback.
To access previous PestLens articles, please log into PestLens.

This electronic message contains information generated by the USDA solely for the intended recipients. Any unauthorized interception of this message or the use or disclosure of the information it contains may violate the law and subject the violator to civil or criminal penalties. If you believe you have received this message in error, please notify the sender and delete the email immediately.

Read Full Post »

‘Ten years ago this was science fiction’: the rise of weedkilling robots
A robot made by Carbon Robotics kills weeds on farmland using lasers. Photograph: Carbon Robotics

MON, 16 AUG, 2021 – 14:16PÁDRAIG BELTON

In the corner of an Ohio field, a laser-armed robot inches through a sea of onions, zapping weeds as it goes.

This field doesn’t belong to a dystopian future but to Shay Myers, a third-generation farmer who began using two robots last year to weed his 30-acre crop. The robots – which are nearly three metres long, weigh 4,300kg and resemble a small car – clamber slowly across a field, scanning beneath them for weeds which they then target with laser bursts.

“For microseconds, you watch these reddish colour bursts. You see the weed, it lights up as the laser hits, and it’s just gone,” said Myers. “Ten years ago this was science fiction.” Other than engine sounds, the robots are almost silent and each one can destroy 100,000 weeds an hour, according to Carbon Robotics, the company that makes them.

Carbon Robotics, in common with other agri-robotic startups, emphasizes the environmental benefits these machines can bring to farming by helping to reduce soil disturbance, which can contribute to erosion, and allowing farmers to heavily reduce or even eradicate the use of herbicides.

Farmers across the globe are under increasing pressure to reduce their use of herbicides and other chemicals, which can contaminate ground and surface water, affect wildlife and non-target plants, and have been linked to increased cancer risk. At the same time, they are battling a rise in herbicide-resistant weeds, giving extra impetus to the search for new ways to kill weeds.

“Reduced herbicide usage is one of the spectacular outcomes of precision weeding,” said Gautham Das, a senior lecturer in agri-robotics at the University of Lincoln in the UK. Destroying weeds with lasers or ultraviolet light uses no chemicals at all. But even with robots that do use herbicides, their ability to precisely target weeds can reduce the use by about 90% compared with conventional blanket spraying, Das said.

Five years ago there were almost no companies specializing in farm robots, said Sébastien Boyer, the French-born head of San Francisco-based robot weeding company FarmWise, but it’s now “a booming field”.

The global market for these agricultural robots – which can also be designed to perform tasks such as seeding, harvesting and environmental monitoring – is predicted to increase from $5.4bn (€4.58bn) in 2020 to more than $20bn (€16.98bn) by 2026. “Things scale up very quickly in agriculture,” said Myers.

FarmWise found its first customers in California’s Salinas Valley, which grows lettuce, broccoli, cauliflower and strawberries and is known as “America’s salad bowl”. Ten of the US’s 20 largest vegetable growers, in California and Arizona, now use the company’s robot weeders, according to Boyer. “In the beginning, they started working with us as an experiment, but now they are heavily relying on us”.

Removing pests, such as aphids, thrips and lygus bugs, is a next step for FarmWise. Robots can markedly reduce the use of fungicides and pesticides, said Boyer, by applying them more precisely, using computer vision.

As well as concerns over farming chemicals, labour shortages also play a part in robots’ advance into farmland. Farm labour can be “expensive, hard to come by and dangerous” for people involved, said Myers. 

There are still big challenges to wider-scale adoption. One problem is working in places where a battery recharge is not always readily available, which is a reason some robots – including those made by Carbon Robotics and FarmWise – use diesel for power, which itself produces harmful emissions and pollution.

Danish company FarmDroid’s machines and a herbicide-spraying robot made by Switzerland’s Ecorobotix are both solar-powered.

With batteries rapidly becoming lighter and gaining capacity, farm robots could soon be electrified, said Paul Mikesell, head of Carbon Robotics. This must be accompanied by charging infrastructure on farms, said Rose. “I don’t think we’re far away at all,” he added.

In the meantime, using fewer herbicides may be worth some diesel use, said Richard Smith, a weed science farm adviser from University of California at Davis. “In comparison to all the other tractor work that is done on intensive vegetable production fields, the amount used for the auto-weeders is a small per cent,” he said.

Another challenge is cost. These robots are still expensive, though broader adoption is likely to bring costs down. Carbon Robotics’s robot costs roughly the same as a mid-size tractor – in the hundreds of thousands of dollars.

FarmWise sells robots’ weeding labour, rather than the robots themselves, charging roughly $200 (€170) an acre. Selling a weeding service instead of selling robots requires less upfront investment from farmers, said Boyer, and helped get the robotics business off the ground.

“These service models should reduce the cost barrier for most farmers, and they do not have to worry too much about the technical difficulties with these robots,” Das said.

Covid has been a problem, too, impeding access to clients, investors and semiconductors from Asia. The pandemic has “squeezed startups out of the runway”, says Andra Keay, head of the non-profit Silicon Valley Robotics.

But, beyond weeding robots, Covid has also spurred interest in how robots can shorten supply chains.

Robot-run greenhouses can use hydroponics – growing plants without soil – to produce food closer to large population centres like New York, instead of in places like California where soil is richer.

Iron Ox, a robot-powered greenhouse company based in California, has devised a robotic arm which scans each greenhouse plant and creates a 3D model of it to monitor it for disease and pests.

“Not a lot has changed in agriculture, especially in fresh produce, in the last 70 years,” said Brandon Alexander, the head of Iron Ox who grew up in a large Texas farming family. “Robotic farming offers a chance for humanity to address climate change before 2050,” he said.

Read Full Post »

Integrated pest management for indoor cultivation pt. 1

In this new article series sponsored by Hawthorne Gardening Company, we are going to explore the biggest enemies of growers: pests. With today’s article, we start investigating the most dangerous pests for crops such as cannabis, lettuce, saffron, and so on, and how they ravage our favorite plants. In the next articles of this series, we will talk about best prevention practices, and about scouting and monitoring. But before we get to how to repel these attackers, we first have to know them!

Considering the environmental conditions needed to cultivate plants indoors, it doesn’t come as a surprise that greenhouses represent a perfect breeding ground for pests to develop. Because of that, early detection and diagnosis of pest insects are necessary to make control decisions before the problem gets out of hand and growers suffer economic loss. Some common and important greenhouse arthropod pests to keep a close watch for are: aphids, fungus gnats, thrips, whiteflies, root aphids and mites. The most frequently observed diseases are: powdery mildew, botrytis, pythium and fusarium.

“Aphids (Hemiptera: Aphididae) are a typical insect pest of greenhouses which feed on a wide variety of plants by piercing leaf cells and sucking out their contents by means of their stylets,” Ian Bateman, technical service manager at Hawthorne Gardening Company. “Aphids also work as vectors for plant viruses, and they release honeydew waste products that can be spotted on leaves that appear as translucent, or wet spot. When a plant is heavily infested, other than the translucent spots, leaves can turn yellow as well as white skin residues can be found. Additionally, wet spots become a perfect breeding ground for mold or fungal diseases.”

Thrips (Thysanoptera: Thripidae) are a severe insect pest of greenhouses which feed on a wide variety of plants by piercing surface cells of leaves and sucking out the cell contents by means of their stylets. “Thrips also have a very rapid life cycle, which allows for multiple generations per year,” Ian explains. “At the end of the second larval stage, thrips enter the soil or leaf litter. Thrips tend to feed on buds and new leaves – and generally speaking, they prefer to feed on the upper leaf surface of plants. Bronze or silvery leaf scars and tiny black spots of fecal excrements are evident on leaves with heavy-feeding injury.”

Whiteflies (Diptera: Aleyrodidae) are white, soft-bodied, winged insects with a triangular shape, and are often found in clusters on the undersides of leaves. “Whiteflies use their piercing, needlelike mouthparts to suck sap from phloem, the food-conducting tissues in plant stems and leaves. Large populations can cause leaves to turn yellow, appear dry, or fall off plants. Like aphids, whiteflies excrete a sugary liquid called honeydew, so leaves may be sticky or covered with black sooty mold that grows on honeydew,” he continues.

Root aphids
Root aphids (some Pemphigus, Phylloxera, and Rhopalosiphum species) vary in color, but most are white, whitish yellow or brown. “Root aphids have piercing, sucking mouthparts that extract sugar-rich sap from underground structures such as roots, bulbs and rhizomes,” Ian points out. “They can produce a white, waxy secretion that covers their body and some is left behind as they move through the growing medium. This is often mistaken for mealybugs that are also covered with a white waxy or threadlike substance. It is best to use a hand lens and observe the roots to see the actual insect. Minor infections of root aphids do not cause significant plant damage, however, as the populations increase, wounds in plant roots can become entry points for root disease pathogens. Plant roots cannot take up nutrients and therefore can exhibit nutrient deficiencies in the leaves. Plants often have a lack of vigor, are smaller and can wilt, especially during the heat of the day. Root aphids do not travel rapidly, so infections are often restricted to a few plants and spread slowly initially.”

Fungus Gnats
Fungus gnats (Bradysia species) are small, delicate-bodied flies that develop in the growing medium. Adults are 3 mm long, delicate, black flies with long legs and antennae. “Larvae primarily feed on fungi, algae and decaying plant matter as well as plant roots,” Ian remarks. “The larvae are wormlike and translucent, with a black head capsule. Larvae usually are located in the top 2 to 3 inches of the growing medium, depending on moisture level. Moist growing media containing high amounts of peat moss are particularly attractive to adult females. Plants infested by numerous fungus gnat larvae can have stunted growth.”

Spider mites
Spider mites (Acari:Tetranychidae) such as the two-spotted spider mite (Tetranichus urticae) are arthropods that feed on a variety of plant species by sucking the plant cell content through a pair of sharp stylets. Spider mites are tiny (approximately 0.5 mm in length) arachnids with 8 legs and a cream color appearance. “Spider mite populations can develop exponentially in a very short period of time. Eggs are laid in clusters on the underside of leaves. The initial stage of colonization commonly starts from the bottom third of the plant. Injury initially appears as stippling or yellowish-reddish brown spots on the leaves which are located in correspondence of the colony clusters typically found on the underside of the leaf. Leaves initially turn yellow and, with high population density, desiccate and die. On mature plants, higher branches and those directly under growing lights are more likely to become infested with spider mites.”

Stay tuned for the second part of this special series on pest management, where we will discuss hemp russet mites, broad mites, powdery mildew, botrytis, pythium, and fusarium!

For more information:
Hawthorne Gardening

Publication date: Thu 12 Aug 2021
© HortiDaily.com / Contact

Read Full Post »

Older Posts »