Feeds:
Posts
Comments

Archive for the ‘natural enemies’ Category

Ninth International Conference on Management of the Diamondback Moth and Other Crucifer Insect Pests

Photo by Dr. Srinivasan Ramasamy

The Ninth International Conference on Management of the Diamondback Moth and other Crucifer Insect Pests will be organized by the World Vegetable Center in association with Royal University of Agriculture (RUA) in Cambodia and Taiwan Agricultural Chemicals and Toxic Substances Research Institute (TACTRI). The conference will be held during May 2-5, 2023 at Phnom Penh, Cambodia. About 100 – 150 researchers worldwide are expected to participate and present research papers. The conference is designed to provide a common forum for the researchers to share their findings in bio-ecology of insect pests, host plant resistance, biological control, pesticides and insect resistance management on crucifer crops and integrated pest management. As with previous workshops / conference, a comprehensive publication of the proceedings will be published.

Scientific Sessions

  1. Diamondback moth and other crucifer pests: The global challenge in a changing climate
  2. Biology, ecology and behavior of diamondback moth and other crucifer pests: What’s new?
  3. Insect plant interactions, host plant resistance and chemical ecology of crucifer pests and their natural enemies
  4. Insecticide resistance and management in crucifer pests: the on-going challenge 
  5. Biological and non-chemical methods of management of crucifer pests (including organic agriculture) 
  6. Genetic approaches to manage crucifer pests: transgenic plants, CRISPR, RNAi, and genetic pest management
  7. Constraints and opportunities to the sustained adoption of integrated pest management (IPM) for the management of DBM and other crucifer pests
Photo by Dr. Subramanian Sevgan

Photo by Dr. Subramanian Sevgan
Photo by Dr. Subramanian Sevgan

Photo by Dr. Subramanian Sevgan

Details

CALL FOR ABSTRACTS / PAPERS

  • 6 February – 31 March 2023

REGISTRATION

REGISTRATION FEE

  • Scientists (Outside Cambodia USD 400)
  • Scientists (From Cambodia USD 200)
  • Students (USD 200)
  • Accompanying person (USD 200)

ABSTRACT SUBMISSION

Scientific Committee

Dr. SRINIVASAN RAMASAMY

World Vegetable Center, Taiwan

Dr. PAOLA SOTELO-CARDONA

World Vegetable Center, Taiwan

Dr. Li-Hsin Huang

Taiwan Agricultural Chemicals andToxic Substances Research Institute, Taiwan

Dr. THO KIM EANG

Royal University of Agriculture, Cambodia

Dr. MYRON P. ZALUCKI

University of Queensland, Australia

Dr. MICHAEL FURLONG

University of Queensland, Australia

Dr. ZHENYU LI

Guangdong Academy of Agricultural Sciences, China

Dr. SUBRAMANIAN SEVGAN

International Centre of Insect Physiology and Ecology, Kenya

Dr. HUGH A. SMITH

University of Florida, USA

Dr. FRANCISCO RUBEN BADENES PEREZ

Institute of Agricultural Sciences, Spain

CONTACT

Dr. SRINIVASAN RAMASAMY

Flagship Program Leader for Safe and Sustainable Value Chains & Lead Entomologist

World Vegetable Center, Shanhua, Tainan 74151, Taiwan

Tel: +886-6-5837801

Fax: +886-6-5830009

E-mail: srini.ramasamy@worldveg.org 

Dr. PAOLA SOTELO-CARDONA

Scientist (Entomology)

World Vegetable Center, Shanhua, Tainan 74151, Taiwan

Tel: +886-6-5837801

Fax: +886-6-5830009

E-mail: paola.sotelo@worldveg.org 

BACKGROUND

Photo by Dr. Christian Ulrichs

Cruciferous crops such as cabbage, cauliflower, broccoli, mustard, radish, and several leafy greens are economically important vegetables vital for human health. These nutritious vegetables provide much-needed vitamins and minerals to the human diet—especially vitamins A and C, iron, calcium, folic acid, and dietary fiber. Crucifers also are capable of preventing different types of cancer.

The diamondback moth (DBM), Plutella xylostella, is the most serious crucifer pest worldwide. In addition, head caterpillar (Crocidolomia pavonana), web worm (Hellula undalis), butterflies (Pieris spp.), flea beetle (Phyllotreta spp.) and aphids (Brevicoryne brassicae, Lipaphis erysimi, Myzus persicae) also cause significant yield losses in crucifers. Farmers prefer to use chemical pesticides for controlling this pest because they have an immediate knock-down effect and are easily available when needed in local markets. Pesticides constitute a major share in the total production cost of crucifer crops, accounting for about one-third to half of the cost of production of major crucifer crops in Asia, for instance. As a result, pest resistance to insecticides is on the rise, leading farmers to spray even more pesticides. Insecticide resistance, environmental degradation, human health impacts, resource loss and economic concerns have triggered a growing interest in integrated pest management (IPM).

Previous International Workshop / Conference(s) on Management of the Diamondback Moth and other Crucifer Insect Pests

Photo by Dr. Srinivasan Ramasamy

The International Working Group on DBM and other Crucifer Insects is an informal group of researchers worldwide who are actively engaged in research and development in crucifer pest management.

This research group participates in an international workshop on the management of DBM and other crucifer insect pests that occurs every five to six years.

The first and second workshops were organized by Asian Vegetable Research and Development Center (AVRDC) in Taiwan in 1985 and 1990.

The third workshop was organized by the Malaysian Agricultural Research and Development Institute in Kuala Lumpur in 1996.

The fourth workshop was organized in Australia in 2001 and the fifth workshop was organized by the Chinese Academy of Agricultural Sciences in Beijing in 2006.

The sixth workshop was organized by AVRDC – the World Vegetable Center in Thailand in 2011 and the seventh workshop was organized by the University Agricultural Sciences Bangalore in 2015.

The eighth International Conference on Management of the Diamondback Moth and other Crucifer Insect Pests was organized by the World Vegetable Center in Taiwan in 2019.

Additional details and proceedings of these workshops / conference can be found at https://avrdc.org/diamondback-moth-working-group/

FacebookTwitterPrintEmail

Share

World Vegetable Center
P.O. Box 42
Shanhua, Tainan, Taiwan 74151

Phone: +886-6-583-7801

Email: info@worldveg.org

Web: avrdc.org

STAFF ONLY

E-mail | Greenhouse

PROUD MEMBER OF:

AIRCA LOGO

The Association of International Research and Development Centers for Agriculture, a nine-member alliance focused on increasing global food security by supporting healthy, sustainable, climate-smart smallholder agriculture.

Join Us on Social Media

FRESH! The Newsletter

Join 9,000 Members and Receive the Latest News and Updates.

“*” indicates required fields First Name*

First Last Name*

Last Email*CAPTCHA

Read Full Post »

Climate change means farmers in West Africa need more ways to combat pests

by Loko Yêyinou Laura Estelle, The Conversation

worm on corn
Credit: Unsplash/CC0 Public Domain

The link between climate change and the spread of crop pests has been established by research and evidence.

Farmers are noticing the link themselves, alongside higher temperatures and greater variability in rainfall. All these changes are having an impact on harvests across Africa.

Changing conditions sometimes allow insects and diseases to spread and thrive in new places. The threat is greatest when there are no natural predators to keep pests in check, and when human control strategies are limited to the use of unsuitable synthetic insecticides.

Invasive pests can take hold in a new environment and cause very costly damage before national authorities and researchers are able to devise and fund ways to protect crops, harvests and livelihoods.

Early research into biological control methods (use of other organisms to control pests) shows promise for safeguarding harvests and food security. Rapid climate change, however, means researchers are racing against time to develop the full range of tools needed for a growing threat.

The most notable of recent invasive pests to arrive in Africa was the fall armyworm, which spread to the continent from the Americas in 2016.

Since then, 78 countries have reported the caterpillar, which attacks a range of crops including staples like maize and has caused an estimated US$9.4 billion in losses a year.

African farmers are still struggling to contain the larger grain borer, or Prostephanus truncatus Horn, which reached the continent in the 1970s. It can destroy up to 40% of stored maize in just four months. In Benin, it is a particular threat to cassava chips, and can cause losses of up to 50% in three months.

It’s expected that the larger grain borer will continue to spread as climatic conditions become more favorable. African countries urgently need more support and research into different control strategies, including the use of natural enemies, varietal resistance and biopesticides.

My research work is at the interface between plants, insects and genetics. It’s intended to contribute to more productive agriculture that respects the environment and human health by controlling insect pests with innovative biological methods.

For example, we have demonstrated that a species of insect called Alloeocranum biannulipes Montr. and Sign. eats some crop pests. Certain kinds of fungi (Metarhizium anisopliae and Beauveria bassiana), too, can kill these pests. They are potential biological control agents of the larger grain borer and other pests.

Improved pest control is especially important for women farmers, who make up a significant share of the agricultural workforce.

In Benin, for example, around 70% of production is carried out by women, yet high rates of illiteracy mean many are unable to read the labels of synthetic pesticides.

This can result in misuse or overuse of chemical crop protection products, which poses a risk to the health of the farmers applying the product and a risk of environmental pollution.

Moreover, the unsuitable and intensive use of synthetic insecticides could lead to the development of insecticide resistance and a proliferation of resistant insects.

Biological alternatives to the rescue

Various studies have shown that the use of the following biological alternatives would not only benefit food security but would also help farmers who have limited formal education:

  1. Natural predators like other insects can be effective in controlling pests. For example I found that the predator Alloeocranum biannulipes Montr. and Sign. is an effective biological control agent against a beetle called Dinoderus porcellus Lesne in stored yam chips and the larger grain borer in stored cassava chips. Under farm storage conditions, the release of this predator in infested yam chips significantly reduced the numbers of pests and the weight loss. In Benin, yams are a staple food and important cash crop. The tubers are dried into chips to prevent them from rotting.
  2. Strains of fungi such as Metarhizium anisopliae and Beauveria bassiana also showed their effectiveness as biological control agents against some pests. For example, isolate Bb115 of B. bassiana significantly reduced D. porcellus populations and weight loss of yam chips. The fungus also had an effect on the survival of an insect species, Helicoverpa armigera (Hübner), known as the cotton bollworm. It did this by invading the tissues of crop plants that the insect larva eats. The larvae then ate less of those plants.
  3. The use of botanical extracts and powdered plant parts is another biological alternative to the use of harmful synthetic pesticides. For example, I found that botanical extracts of plants grown in Benin, Bridelia ferruginea, Blighia sapida and Khaya senegalensis, have insecticidal, repellent and antifeedant activities against D. porcellus and can also be used in powder form to protect yam chips.
  4. My research also found that essential oils of certain leaves can be used as a natural way to stop D. porcellus feeding on yam chips.
  5. I’ve done research on varietal (genetic) resistance too and found five varieties of yam (Gaboubaba, Boniwouré, Alahina, Yakanougo and Wonmangou) were resistant to the D. porcellus beetle.

Next generation tools

To develop efficient integrated pest management strategies, researchers need support and funding. They need to test these potential biocontrol methods and their combinations with other eco-friendly methods in farm conditions.

Investing in further research would help to bolster the African Union’s 2021–2030 Strategy for Managing Invasive Species, and protect farmers, countries and economies from more devastating losses as climate change brings new threats.

Initiatives like the One Planet Fellowship, coordinated by African Women in Agricultural Research and Development, have helped further the research and leadership of early-career scientists in this area, where climate and gender overlap.

But much more is needed to unlock the full expertise of women and men across the continent to equip farmers with next generation tools for next generation threats.

Provided by The Conversation 

This article is republished from The Conversation under a Creative Commons license. Read the original article.


Explore further

Why African farmers should balance pesticides with other control methods

Read Full Post »

With Xsect Xtra, Inveragro eliminates pepper pests

Inveragro, located in the valley of San Felipe, Guanajuato, and known for its tradition of producing and drying chili peppers, was having problems with pest control and humidity levels inside the greenhouse. With Xsect Xtra, they were able to reduce the entry of thrips by 50% while increasing their humidity by 15%, resulting in an ideal climate that promotes pepper growth.

Inveragro is a 10-hectare pepper greenhouse that started operations three years ago in the valley of San Felipe, Guanajuato, an area with different challenges for pepper growers due to its semi-arid climate and the presence of insects and pests such as whitefly, thrips, and weevils.

Germán Sandoval Barba, grower at Inveragro, was looking for a climate solution that would help him face these challenges. A year ago, he decided to try Xsect Xtra.

Ideal humid climate = healthier peppers
The pepper is a tropical crop that likes high humidity levels. Ideally the humidity inside a pepper greenhouse should be between 60% and 80%.

During the summer months, humidity inside Inveragro was between 45% and 50%, and it was necessary to keep the windows closed as a way to conserve humidity inside the greenhouse.

“Before installing Svensson’s insect control nets, I was worried that the temperature would rise too much and that it would affect the humidity. Once we tested the nets, the truth is that it was a very positive surprise the results that we had in terms of temperature and humidity”, says Germán Sandoval

Unlike last year when the windows were practically closed, now with Xsect Xtra, the windows are open between 20% and 30%, having a maximum temperature between 32 and 33 degrees. In addition, with Xsect Xtra, the humidity inside the greenhouse increased between 10% and 15%, compared to last year, achieving an ideal humidity between 60% and 75%, which benefits the growth of peppers.

“I thought that I was going to experience disadvantages with this insect control net because, for me, it was more important to sacrifice climate in order to reduce the entry of pests and insects. But to my surprise, I now have a better climate and fewer insects inside the greenhouse,” said Germán Sandoval.

Greenhouses with 50% fewer thrips
One of the biggest challenges for Germán is the entry of pests, and one way to control this problem is through hermeticity. Inveragro has four full-time employees dedicated exclusively to supervising any failure in the hermeticity of the greenhouses. “When I started looking for options to improve our hermeticity, I discovered the Svensson insect control nets, which would help us to improve our conditions,” says Germán Sandoval.

Before installing Xsect Xtra, during the fifth week of the production cycle, thrips were already seen inside the greenhouse, and it was necessary to apply pesticides and/or agrochemicals prior to the release of the biological control. “Now I can release the biological control we use Orius to control thrips, without pesticides and/or agrochemicals applications that could damage the biological control program,” says Germán, “since the installation of Xsect Xtra, 50% fewer thrips have entered the greenhouse”.

Powdery mildew was another climate problem at Inveragro, and it was necessary to apply agrochemicals at least once a week. During the first year with Svensson’s insect control net, Germán continued with the same program, but no powdery mildew was found inside the greenhouse.

“I’ve already modified my program for this year. I’m only going to apply preventive products every 15 days, which reduces by 50% the cost of powdery mildew throughout the year because now I have better climate conditions in terms of humidity, which is more controllable and promotes pepper growth”.

Germán has also noticed improvements in the beneficial program used to control thrips. He used to have 4 Orius per square meter, and this year he only has three orius per square meter, which means savings in this year’s beneficials budget.

“What Xsect Xtra has given me is improved humidity, fewer pests, and reduced phytosanitary diseases.”
 
Finally, Germán shared the following advice for all pepper growers: “I would tell growers who are afraid to try these nets not to be afraid. In the beginning, I hesitated, but it is something that will help them. What it can generate in the climate is minimal and what it can help them in the phytosanitary issue is very broad. The net pays for itself”.

For more information:
Ludvig Svensson

info@ludvigsvensson.com www.ludvigsvensson.com    

Publication date: Mon 14 Nov 2022

Read Full Post »

    

“Air pollution threatens natural pest control”

When fields of oilseed rape are exposed to diesel exhaust and/or ozone – both found in emissions from diesel-burning vehicles and industry – the number of parasitic insects available to control aphids drops significantly, according to research published today.

The team, led by scientists from the University of Reading, used special equipment to deliver controlled amounts of diesel exhaust and ozone to oilseed rape plants. They also added aphids to the plants and measured the reproductive success of parasitic wasps that habitually lay their eggs inside a freshly stung aphid.

Dr. James Ryalls, University of Reading said: “Even at the levels we used, which were lower than safe maximums set by environmental regulators, the overall numbers of parasitic insects still fell. This is a worrying result as many sustainable farming practices rely on natural pest control to keep aphids and other unwelcome creatures away from valuable crops.


Parasitic wasp and aphid – Peter Swatton, Rothamsted Research 

“Diesel and ozone appear to make it more difficult for the wasps to find aphids to prey upon and so the wasp population would drop over time.”

While the majority of parasitic wasp species decreased in polluted environments, one species of parasitic wasp appeared to do better when both diesel and ozone were present. However, the researchers found that this combination of pollutants also correlated with changes in the plants which might explain the finding.

With both pollutants present, oilseed rape plants produced more of the compounds that give brassica family crops, including mustards and cabbages, their distinctive bitter, hot, and peppery flavor notes. These usually repel insects but in the case of Diaretiella rapae wasps, there was greater abundance and reproductive success associated with diesel exhaust and ozone together.

Dr Ryalls said: “Diaretiella rapae particularly likes to prey on cabbage aphids, which love to eat brassica crops.

“We know that some of the flavor and smell compounds in oilseed rape are converted into substances that do attract D.rapae. So, we could speculate that the stronger smell attracts the wasps and they are more successful in finding and preying upon aphids, that way. It could be that D.rapae is a good choice for pest control in diesel and ozone polluted areas.

“This really goes to show that the only way to predict and mitigate the impacts of air pollutants is to study whole systems.”

As transport shifts away from diesel and towards electric motors, air pollution will change. Knowing how pest-regulation service providers, such as parasitic wasps, respond to these progressive changes, will be essential to planning mitigation strategies to ensure sustainable food security now, and in the future. This research shows that we also must consider the impact of pollution on the plants, wasps, and prey insects, and the interactions between all three.

For more information:
University of Reading
www.reading.ac.uk 

Publication date: Thu 10 Nov 2022

Read Full Post »

Number I                                                                                                                     January, 2023

NEW INTERACTIVE PATHWAY KEYS FOR IDENTIFYING INSECT PESTS OF RICE AND THEIR NATURAL ENEMIES

The correct identification of insect pests and their natural enemies is critical for developing sound and sustainable pest management strategies. As agriculture intensified and insect pests became more problematic, identification of major insect pests and their natural enemies became increasingly relevant when designing appropriate pest management strategies, especially for rice. 

Appointed as the first entomologist at the International Rice Research Institute (IRRI) based in the Philippines, Dr. Mano D. Pathak, established a comprehensive rice insect pest and natural enemy collection in the early 1960s. The aim was to support national rice research programs identify specimens in their own rice arthropod collections. Subsequently, to support this objective, a dichotomous key to over 862 species was published in the chapter Taxonomy of Rice Insect Pests and their Arthropod Parasites and Predators, authored by insect and spider taxonomist, Alberto T. Barrion, with James A. Litsinger, in the book, Biology and Management of Rice Insects,edited by E. A. Heinrichs and published by IRRI in 1994.

In the 1990s, a similar collection program was begun to establish a rice insect and natural enemy collection at WARDA (West African Rice Development Association), now AfricaRice. Specimens of major insect pests and natural enemies found in West African rice were identified by Dr Barrion, who then created an illustrated, dichotomous identification key which was published in the book, Rice Feeding Insects and Selected Natural Enemies in West Africa, authored by E. A. Heinrichs and Alberto Barrion (2002).

Since the printed versions of both books have been out-of-print for several years, a recent upgrade of the Lucid software program https://www.lucidcentral.org provided the possibility of creating interactive, digital versions of both keys. Initially developed for creating matrix identification keys, the Lucid builder now enables paper-based dichotomous keys to be converted and “published” as online, interactive pathway keys. Courtesy of IAPPS, the IRRI and West African keys are now freely available online. You can access them here. Please note that we will soon add 450 photos of rice insect pests and their natural enemies to the Taxonomy of Rice Insect Pests and their Arthropod Parasites and Predators key. For further information, please email support@plantprotection.org

Prof. Geoff Norton

IAPPS President

E-mail: geoffn86@gmail.com

Read Full Post »