Feeds:
Posts
Comments

Archive for the ‘Insects’ Category

Temperate insects as vulnerable to climate change as tropical species

Date: June 8, 2020 Source: Uppsala University Summary: In previous research, it has been assumed that insects in temperate regions would cope well with or even benefit from a warmer climate. Not so, according to researchers. The earlier models failed to take into account the fact that insects in temperate habitats are inactive for much of the year. Share: FULL STORY


In previous research, it has been assumed that insects in temperate regions would cope well with or even benefit from a warmer climate. Not so, according to researchers from the Universities of Uppsala and Lund in Sweden and Oviedo, Spain, in a new study. The earlier models failed to take into account the fact that insects in temperate habitats are inactive for much of the year.

The research group’s study, published in the journal Scientific Reports, presents new knowledge about the potential effects of global warming on insect populations. The results show that insects may be more threatened by climate change than previous estimates have indicated.

“Insects in temperate zones might be as threatened by climate change as those in the tropics,” says Uppsala University professor Frank Johansson.

The researchers found new, disturbing patterns in a modified analysis of a previously used dataset on insects’ critical temperature limits and their survival. Their conclusion is that temperate insects might be just as sensitive to climate change as tropical ones. The previous studies showed that tropical insects are severely threatened by climate change since they already live very close to their optimal temperature and “critical thermal maximum.” However, the scientists responsible for those previous studies also assumed that temperate insects live far below their own optimal and maximum temperatures, and might therefore benefit from climate change.

The problem is that the earlier studies used mean annual temperatures for all their estimates. In so doing, they failed to consider that the vast majority of insects in temperate latitudes remain inactive in cold periods — that is, for much of the year.

When more biological details about the various insect species, and only the months in which the species are active, are entered in the models, the new estimates show that in temperate insects’ habitats, too, the temperatures are close to the insects’ optimal and critical maximum. This is because the average temperature for the months when the insects are active clearly exceeds the mean year-round temperature. Temperate insects are thus as vulnerable as tropical species to temperature increases

When the temperature is close to insects’ optimal temperature or critical upper limit, there is a great risk of their numbers declining. The decreases in insect populations would also affect humans, since many insect species provide ecosystem services, such as pollination of fruit, vegetables and other plants we eat.


Story Source:

Materials provided by Uppsala University. Original written by Linda Koffmar. Note: Content may be edited for style and length.


Journal Reference:

  1. Frank Johansson, Germán Orizaola, Viktor Nilsson-Örtman. Temperate insects with narrow seasonal activity periods can be as vulnerable to climate change as tropical insect  species. Scientific Reports, 2020; 10 (1) DOI: 10.1038/s41598-020-65608-7

RELATED STORIES


Climate Change Increasing Risks of Lightning-Ignited Fires

May 31, 2018 — Fires ignited by lightning have and will likely continue to increase across the Mediterranean and temperate regions in the Southern Hemisphere under a warmer climate, according to a new study co-led …

Off Track: How Storms Will Veer in a Warmer World

Nov. 15, 2017 — The dry, semi-arid regions are expanding into higher latitudes, and temperate, rainy regions are migrating poleward. In a new paper, researchers provide new insight into this phenomenon by …

How Temperature Guides Where Species Live, Where They’ll Go

Feb. 15, 2017 — A new study could prove significant in answering among the most enduring questions for ecologists: Why do species live where they do, and what are the factors that keep them there? The ranges of …

Synchronized Leaf Aging in the Amazon Responsible for Seasonal Increases in Photosynthesis

Feb. 25, 2016 — High-tech photography in the Amazon reveals that young leaves grow in at the same times as older ones perish, in strong contrast to temperate forests in North America or Europe, resulting in seasonal … FROM AROUND THE WEB


Below are relevant articles that may interest you. ScienceDaily shares links with scholarly publications in the TrendMD network and earns revenue from third-party advertisers, where indicated.

  1. Effects of climate change and grazing pressure on shrub communities of West Asian rangelands Mounir Louhaichi et al., International Journal of Climate Change Strategies and Management, 2019
  2. Climate change and food security in EAC region: a panel data analysis Walaa Mahrous, Review of Economics and Political Science, 2019
  3. Climate change implications for water resource management in Caribbean tourism Kwame Emmanuel et al., Worldwide Hospitality and Tourism Themes, 2009
  4. The Earth Only Endures – On Reconnecting with Nature and Our Place in It International Journal of Climate Change Strategies and Management, 2009
  1. Effects of a changing climate on livelihoods of forest dependent communities Faith Nyangute Saalu et al., International Journal of Climate Change Strategies and Management, 2020
  2. Human competences that facilitate adaptation to climate change: a research in progress Jackie Kerry et al., International Journal of Climate Change Strategies and Management, 2012
  3. Biodiversity and climate change in Kuwait Samira Omar Asem et al., International Journal of Climate Change Strategies and Management, 2010
  4. Climate change in the Middle East and North Africa (MENA) region and implications for water resources project planning and management Saleh A. Wasimi, International Journal of Climate Change Strategies and Management, 2010

Read Full Post »

Science

Watch how battles with bats give moths their flashy tails

Bats and their prey are in a constant arms race. Whereas the winged mammals home in on insects with frighteningly accurate sonar, some of their prey—such as the tiger moth—fight back with sonar clicks and even jamming signals. Now, in a series of bat-moth skirmishes (above), scientists have shown how other moths create an “acoustic illusion,” with long wing-tails that fool bats into striking the wrong place. The finding helps explain why some moths have such showy tails, and it may also provide inspiration for drones of the future.

Moth tails vary from species to species: Some have big lobes at the bottom of the hindwing instead of a distinctive tail; others have just a short protrusion. Still others have long tails that are thin strands with twisted cuplike ends. In 2015, sensory ecologist Jesse Barber of Boise State University in Idaho and colleagues discovered that some silk moths use their tails to confuse bat predators. Now, graduate student Juliette Rubin has shown just what makes the tails such effective deterrents.

Working with three species of silk moths—luna, African moon, and polyphemus—Rubin shortened or cut off some of their hindwings and glued longer or differently shaped tails to others. She then tied the moths to a string hanging from the top of a large cage and released a big brown bat (Eptesicus fuscus) inside. She used high-speed cameras and microphones to record the ensuing fight.

Moths with no tails (such as polyphemus) were easy quarry for the bats, escaping only about 27% of the time, Rubin, Barber, and colleagues report today in Science Advances. But when Rubin enlarged the polyphemus hindwing lobe, twice as many escaped the bat’s sonar, or echolocation system.

Bats going after long-tailed African moon moths got a mouthful of tail 75% of the time as the moths flitted away. Shorten the tail, and the African moon moths escaped only 45% of the time. With no tail at all, that percentage dropped to 34%. When Rubin’s colleagues Chris Hamilton and Akito Kawahara at the Florida Museum of Natural History in Gainesville built a family tree of silk moths and their relatives, they realized that long tails had evolved independently several times. That’s further evidence that they are an important life-saving feature for these moths.

“The authors have demonstrated a powerful approach for understanding the diversity of moth shapes,” says Aaron Corcoran, an animal ecologist at Wake Forest University in Winston-Salem, North Carolina, who was not involved with the work. “There appear to be many different ways to trick a bat’s echolocation system.” The study also revealed how hard it was for bats to work around this deception, he adds. “The fact that the bats in the study never learned how to catch these moths, despite ample time to do so, shows how hard-wired this blind spot is in the bat’s perception.”

The findings could benefit other fields such as robotics, says Martin How, a sensory ecologist at the University of Bristol in the United Kingdom. Because the study examined the bat-moth dogfights at such a fine scale, the results could help engineers design the “bio-inspired technologies of the future,” he says, including deftly flying drones.

*Correction, 5 July, 1:45 p.m.: This article has been updated to reflect that although Juliette Rubin was the lead author of the paper, some of the work was done by other researchers.

Read Full Post »

A “superb” southwestern Missouri cicada, Neotibicen superbus

Back in the summer of 2015, I made an early August trip to the White River Hills region of extreme southwestern Missouri. I was actually looking for one of Missouri’s more uncommon cerambycid beetles – Prionus pocularis, associated with shortleaf pine in the mixed hardwood/pine forests across the southern part of the state. I did not encounter the beetle in either my prionic acid-baited pitfall traps or at the ultraviolet lights I had set up the evening before, but while I was in the area I thought I would visit one of my favorite places in the region – Drury-Mincy Conservation Area in Taney Co. Sitting right on the border with Arkansas, the rolling hills of this area feature high-quality dolomite glades and post oak savannas. I’ve had some excellent collecting here in the past and hoped I would find something of interest this time as well. I didn’t arrive until after midnight, and since there are no hotels in the area I just slept in the car.

Neotibicen superbus

The next morning temperatures began to rise quickly, and with it so did the cacophony of cicadas getting into high gear with their droning buzz calls. As I passed underneath one particular tree I noticed the song was coming from a branch very near my head. I like cicadas, but had it been the song of a “normal” cicada like Neotibicen lyricen (lyric cicada) or N. pruinosus (scissor grinder cicada) I would have paid it no mind. It was, instead, unfamiliar and distinctive, and when I searched the branches above me I recognized the beautiful insect responsible for the call as Neotibicen superbus (superb cicada), a southwest Missouri specialty—sumptuous lime-green above and bright white pruinose beneath. I had not seen this spectacular species since the mid 1980s (most of my visits to the area have been in the spring or the fall rather than high summer), and I managed to catch it and take a quick iPhone photograph for documentation. A species this beautiful, however, deserves ‘real’ photos, so I spent the next couple of hours attempting to photograph an individual in situ with the big camera. Of course, this is much, much easier said than done, especially with this species—their bulging eyes give them exceptional vision, and they are very skittish and quick to take flight. Most of the individuals that I located were too high up in the canopy to allow a shot, and each individual that was low enough for me to approach ended up fluttering off with a screech before I could even compose a shot, much less press the shutter. Persistence paid, however, and I eventually managed to approach and photograph an unusually calm female resting – quite conveniently – at chest height on the trunk of a persimmon tree.

Sanborn-Phillips_2013_Fig-16

According to Sanborn & Phillips (2013, Figure 16 – reproduced above), Neotibicen superbus, is found in trees within grassland environments primarily in eastern Texas and Oklahoma, although records of it exist from each of the surrounding states – especially southern Missouri and northern Arkansas (Figure 16 below, Sanborn & Phillips 2013). Later the same day I would see the species abundantly again in another of the region’s dolomite glades – this one in Roaring River State Park further west in Barry Co., suggesting that dolomite glades are the preferred habitat in this part of its range. Interestingly, I think the Missouri records at least must be relatively recent, as Froeschner (1952) did not include the species in his synopsis of Missouri cicadas. This was all the information I had back in the 1980s when I first encountered the species in southwestern Missouri, its apparent unrecorded status in the state making it an even more exciting find at the time.

Neotibicen superbus

REFERENCES:

Froeschner, R. C.  1952. A synopsis of the Cicadidae of Missouri. Journal of the New York Entomological Society 60:1–14 [pdf].

Sanborn, A. F. & P. K. Phillips. 2013. Biogeography of the cicadas (Hemiptera: Cicadidae) of North America, north of Mexico. Diversity 5(2):166–239 [abstractpdf].

© Ted C. MacRae 2018

Read Full Post »

fresh plaza logo

From PestNet

Updated fruit fly identification handbook

Welcome resource for alert Australians

As there were several fruit fly outbreaks declared across the country in 2018, the release of an updated Australian Handbook for the Identification of Fruit Flies will be welcomed by the agricultural sector. The publication will make sorting and identifying the thousands of tephritid ‘true’ fruit flies affecting a wide variety of crops grown in Australia much easier.
The handbook is accompanied by additional online information, developed via the companion website Fruit Fly Identification Australia (fruitflyidentification.org.au) and is a handy reference for all primary producers, not just those producing commercial quantities of fruit.

Dr Mark Schutze, from the Queensland Department of Agriculture and Fisheries: “We’ve updated all the fruit fly images using fresh material and produced new, tailor made, molecular diagnostic tools that have emerged from our investment in next generation genomic research.”

According to farmingahead.com.au, over 60 target species of fruit flies are included in the handbook and website, shown both as individual flies and in groups of flies that look similar to each other. Importantly, the range of variation within species is also captured.
Find the Australian Handbook for the Identification of Fruit Flies

Publication date: 6/20/2018

Read Full Post »

T. S. Park et al./Nature Communications, 10.1038

This ancestor of today’s insects, spiders, and crustaceans had a simple brain, but complex eyes

Although it’s hard to believe that delicate nervous tissues could persist for hundreds of millions of years, that’s exactly what happened to the brains and eyes of some 15 ancestors of modern-day spiders and lobsters, called Kerygmachela kierkegaardi (after the famous philosopher Søren Kierkegaard). Found along the coast of north Greenland, the 518-million-year-old fossils contained enough preserved brains and eyes to help researchers write a brand-new history of the arthropod nervous system.

Until now, many biologists had argued that ancient arthropods—which gave rise to today’s insects, spiders, and crustaceans—had a three-part brain and very simple eyes. Compound eyes, in which the “eye” is really a cluster of many smaller eyes, supposedly evolved later from a pair of legs that moved into the head and was modified to sense light.

But these new fossils, which range from a few centimeters to 30 centimeters long, had a tiny, unsegmented brain, akin to what’s seen in modern velvet worms, researchers report today in Nature Communications. Despite the simple brain, Kerygmachela’s eyes were probably complex, perhaps enough to form rudimentary images. The eyes, indicated by shiny spots in the fossil’s small head, appear to be duplicated versions of the small, simple eyes seen today in soft, primitive arthropods called water bears and velvet worms.

Read Full Post »

This legless insect can jump 30 times its body length

SAN FRANCISCO, CALIFORNIA—U.S. figure skater Nathan Chen may wow crowds with his endless quadruple jumps, but the Olympic hopeful can’t hold a candle to the legless gall midge larva (Asphondylia sp). The 3-millimeter-long larva—which startled scientists when it started hopping out of its lab dishes—plants its rear end on the ground, slides its head toward its nether regions, and latches its body into a loop, which it then flattens by shifting fluids inside its body. After enough pressure builds up, the midge releases the latch, straightens, and flies into the air at 1 meter per second for a jump as much as 30 times its body length. On a human scale, that distance would be 60 meters. (Consider: The current long jump record is less than 9 meters, with a running start.) Researchers discovered the feat with super–high-speed video cameras that shot 20,000 frames per second. The secret to the midge’s success is power amplification—the ability to build up force and then release it all at once, they report here today at the annual meeting of the Society for Integrative and Comparative Biology. It’s like an archer pulling back a bowstring, temporarily storing the energy for shooting the arrow in the elastic string. No one knows yet why the midge larva jumps—until it matures into a fly, it never leaves its home, an abnormal growth on a type of goldenrod called silverrod. But documenting its Olympian performance could help scientists understand the movements of similar larval flies—and design better robots.

Read Full Post »

science daily -logo

beelikemoth2_1280x720

Researchers find moth last seen 130 years ago

A moth masquerading as a shimmering blue bee has been rediscovered after 130 years. A damaged museum specimen collected in 1887 is the only previous evidence such a creature existed, The Guardian reports. Now, Polish researchers have spotted 12 of the oriental clearwing moths in Malaysia’s lowland rainforest collecting salts and minerals among the bees they look, act, and sound like. But how much longer this lost species lingers is tenuous, the researchers suggest in Tropical Conservation Science. The moth’s habitat is disappearing from rapid deforestation.

Read Full Post »

 

22 November 2017 10:42:18 22 November 2017 10:42:18 |Agri Safety,Crops and Cereals,News

Crop damaging ‘super pest’ now capable of surviving wintry conditions

Resistant diamondback moths now capable of surviving winter

Resistant diamondback moths now capable of surviving winter

A ‘super pest’ moth resistant to a class of common plant protection is now also capable of surviving through the UK’s cold winter conditions, according to new research.

Diamondback moth (DBM) caterpillars feed on crops including cabbage, broccoli, swedes and Brussels sprouts, causing cosmetic damage, which could result in the loss of up to 100 per cent of the crop. Brassicas were worth more than £200m to UK agriculture last year.

The pests, which have developed resistance to the pyrethroid class of plant protection products often have reduced fitness levels so don’t survive through winter.

However, experts from Rothamsted Research and AHDB are concerned because this is not the case with this new strain of moth.

Growers are being asked to submit samples of the DBM either when seen through winter, or in spring when numbers start to rise, to aid the continued monitoring and development of control strategies to manage the pest.

Dr Dawn Teverson, Knowledge Exchange Manager at AHDB, said: “This new research reconfirms what we found last year. It’s important that Brassica growers are aware of this pyrethroid resistance and plan their crop protection programmes to treat against diamondback moths, accordingly.

“If pyrethroids are used, not only does this now fail to control DBM but it could also kill beneficial insect predators which would naturally help control the pest, further exacerbating the problem.”

Surviving winter

Pyrethroid resistant DBM have been found overwintering on swede crops grown under insect netting.

Dr Steve Foster, research entomologist at Rothamsted Research, said: “We have seen in aphids that those which have developed resistance may not survive the winter, however this doesn’t seem to be the case with this new strain of DMB.

“The identification of pyrethroid resistance in this season’s population of moths suggests that they are descendants of 2016’s migrating diamondbacks and therefore that the resistance hasn’t stopped them from surviving over winter.”

Andrew Rutherford, farm and agronomy manager at K. S. Coles, said: “This study has been extremely helpful to growers, allowing them to increase their understanding of the pests they are trying to control and which actives will be effective.”

The diamondback moth is often described as a ‘super-pest’ because it has a rapid lifecycle, providing more opportunities for resistance to develop through gene mutation.

In 2016, Steve Foster at Rothamsted Research tested three diamondback moth samples for resistance from Lincolnshire, Suffolk and Scotland. All three samples were resistant to pyrethroids

Read Full Post »

Korea Herald

Fire ants found in Korea belong to American species: ministry

By Yonhap

  • Published : Oct 10, 2017 – 13:24
  • Updated : Oct 10, 2017 – 14:32
Red fire ants found in the southern port of Busan are presumed to be identical to a species in the United States, but further inspection is needed to figure out their exact origin, South Korea’s quarantine authority said Tuesday.

Twenty-five fire ants were discovered in a storage container at Busan’s Gamman port Sept. 28, and a nest capable of accommodating 1,000 was also found, raising alarm that the highly invasive insects were inadvertently brought into the country.

The Ministry of Agriculture, Food and Rural Affairs said it has conducted emergency quarantine measures and stepped up monitoring to prevent further spread, noting it did not find other ants in the 34 ports and two inland container depots examined so far.

Park Bong-gyun, the chief of the Animal and Plant Quarantine Agency, briefs on red ants at a government building in Sejong on Oct. 10, 2017. (Yonhap)

Although the remains of a queen ant were not found, the ministry tentatively concluded that it already died based on the size and scope of the colony discovered in the cracked asphalt.

“Red fire ants are generally found in the United States, but they have since spread to China, Australia and Japan, giving birth to special genetic variations as they evolve in their new environment,” Park Bong-gyun, the chief of the Animal and Plant Quarantine Agency, said in a briefing.

“It is premature to say the red fire ants came from the US at this point, as an in-depth epidemiological inspection into their variation is needed to figure out their origin.”

Gamman port received containers from six nations between May and September — China, Japan, Taiwan, the US, Australia and Malaysia — with 60 percent coming from China, the ministry said.

Quarantine officials will continue to sterilize the area within a 100-meter radius of the container depot until next week and conduct inspections on the pavement and other areas.

The ministry said it will work with other related organizations to regularly monitor and inspect major ports to prevent the inflow of red fire ants. (Yonhap)

Read Full Post »

Machine Learning Helps Small Farmers Identify Plant Pests And Diseases

A new app aims to help smallholder farmers fight pests and diseases that are killing their crops.

Machine Learning Helps Small Farmers Identify Plant Pests And Diseases
[Photo: Waldo Swiegers/Bloomberg/Getty Images]

The world’s 500 million smallholder farmers have a new weapon in their never-ending fight against pests and plant diseases: an app called Plantix. By uploading pictures of affected crops to the mobile service, they can quickly diagnose unwanted funguses and insects and get ideas about how to deal with infestations before they get out of control. Three years after launch, the app is being used more than 1 million times a month, particularly in India, Brazil, and North Africa.

[Photo: courtesy Plantix]

In Africa, the current number-one enemy pest is the fall armyworm–so-called because it marches like an advanced military unit, eating everything in its path. The colorful caterpillars are munching through maize, sorghum, rice, and legume fields in 24 countries. If farmers don’t react in time–for example by spraying with the appropriate pesticides–economic losses could reach more than $5 billion this year, estimates show.The UN Food & Agricultural Organization says 20% to 40% of all global crops are lost each year because of plant pests and diseases that aren’t managed properly. Developed by a small team in Germany, Plantix offers guidance to farmers who don’t have the privilege of human consultants.

https://www.fastcompany.com/embed/uATcLOJZ?playerID=G2hQKLvX

“There’s a huge gap between agricultural consultancy and people’s needs on the ground in emerging countries,” says Korbinian Hartberger, one of four cofounders of PEAT, the startup that develops the free-to-use app. “There’s a lot more demand than what’s on offer. They can’t wait for someone to come along two months [after the infestation] and say, ‘yes, I think you should have sprayed this.’”

The Android interface is simple but makes use of sophisticated machine learning technology working in the background. PEAT has trained its algorithms using thousands of pictures of affected plants, allowing the app to recognize telltale patterns as farmers upload new pictures. They’re currently sending in about 5,000 pictures a day and the app is able to recognize up to 400 diseases or pests. The most common include soya bean and wheat rust, powdery and downy mildews, and aphids, Hartberger says.

As well as automated image recognition, the app also features community forums, where users help each other diagnose problems from uploaded photos. About 200,000 users are actively using the service, according to the startup.

PEAT was initially funded through a grant from the German government and it doesn’t generate revenue currently. Hartberger says that could change in the future. For instance, the system could be adapted for use in aerial drones or on-the-ground robots, or it could help connect farmers with sellers of agricultural products. Currently, it suggests generic pesticides, but not brand names.

“People may use more pesticides [after using the app], but they’re less likely to use the wrong pesticides. Our contribution is to smallholders with fast and reliable information, so they’re not just going to shop and asking the guy behind the counter for advice. It gives them something more specific they can work with,” Hartberger says.

About the author

Ben Schiller is a New York staff writer for Fast Company. Previously, he edited a European management magazine and was a reporter in San Francisco, Prague, and Brussels.

More

Read Full Post »

Older Posts »