Feeds:
Posts
Comments

Archive for the ‘Honey bees’ Category

Fungus fights mites that harm honey bees

New fungus strain could provide a chemical-free method to help honey bees

ScienceDaily

Date:May 27, 2021Source:Washington State University

Summary: A new fungus strain bred in a lab could provide a chemical-free method for eradicating mites that kill honey bees. Varroa destructor mites play a large role in Colony Collapse Disorder, which destroys thousands of bee colonies every year. Share:

FULL STORY


A new fungus strain could provide a chemical-free method for eradicating mites that kill honey bees, according to a study published this month in Scientific Reports.

A team led by Washington State University entomologists bred a strain of Metarhizium, a common fungus found in soils around the world, to work as a control agent against varroa mites. Unlike other strains of Metarhizium, the one created by the WSU research team can survive in the warm environments common in honey bee hives, which typically have a temperature of around 35 Celsius (or 95 F).

“We’ve known that metarhizium could kill mites, but it was expensive and didn’t last long because the fungi died in the hive heat,” said Steve Sheppard, professor in WSU’s Department of Entomology and corresponding author on the paper. “Our team used directed evolution to develop a strain that survives at the higher temperatures. Plus, Jennifer took fungal spores from dead mites, selecting for virulence against varroa.”

Jennifer Han, a post-doctoral researcher at WSU, led the breeding program along with WSU assistant research professors Nicholas Naeger and Brandon Hopkins. Paul Stamets, co-owner and founder of Olympia-based business Fungi Perfecti, also contributed to the paper. Stamets is a fungi expert, well-known for using several species in applications ranging from medicine to biocontrol.

Varroa destructor mites, small parasites that live on honey bees and suck their “blood,” play a large role in Colony Collapse Disorder, which causes beekeepers to lose 30-50% of their hives each year. The mites feed on bees, weakening their immune systems and making them more susceptible to viruses.

The main tools beekeepers use to fight varroa are chemicals, such as miticides, but the tiny pests are starting to develop resistance to those treatments, Naeger said.

Metarhizium is like a mold, not a mushroom. When spores land on a varroa mite, they germinate, drill into the mite, and proliferate, killing it from the inside out. Bees have high immunity against the spores, making it a safe option for beekeepers.

Stamets, who did some of the initial testing with Metarhizium that showed the fungus couldn’t survive hive temperatures, was impressed by the work done by the WSU researchers.

“Science progresses through trial and error, and my technique wasn’t economical because of the hive heat,” he said. “But Jennifer did enormous amounts of culture work to break through that thermal barrier with this new strain. It’s difficult to really appreciate the Herculean effort it took to get this.”

Han and Naeger screened more than 27,000 mites for levels of infection to get the new strain.

“It was two solid years of work, plus some preliminary effort,” Han said. “We did real-world testing to make sure it would work in the field, not just in a lab.”

This is the second major finding to come from WSU’s research partnership with Stamets involving bees and fungi. The first involved using mycelium extract that reduced virus levels in honey bees.

“It’s providing a real one-two punch, using two different fungi to help bees fight varroa,” Stamets said. “The extracts help bee immune systems reduce virus counts while the Metarhizium is a potentially great mite biocontrol agent.”

The next step is to seek approval from the Environmental Protection Agency to use Metarhizium on hives used in agriculture. The team must also finalize delivery methods for beekeepers to apply the fungus in hives.

“We hope in 10 years that, rather than chemical miticides, Metarhizium is widely used to control Varroa mites,” Sheppard said. “And that the mite problem for beekeepers has been significantly reduced.”

The team thinks the methods they developed to evolve Metarhizium for varroa control could be used to improve biocontrol agents in other crop systems as well.

The majority of the funding for this work came from private donations from individuals and foundations. Additional funding came from Washington State Department of Agriculture (WSDA) Specialty Crop Block Grant K2531 and the USDA National Institute of Food and Agriculture, Hatch 1007314.


Story Source:

Materials provided by Washington State University. Original written by Scott Weybright. Note: Content may be edited for style and length.


Journal Reference:

  1. Jennifer O. Han, Nicholas L. Naeger, Brandon K. Hopkins, David Sumerlin, Paul E. Stamets, Lori M. Carris, Walter S. Sheppard. Directed evolution of Metarhizium fungus improves its biocontrol efficacy against Varroa mites in honey bee coloniesScientific Reports, 2021; 11 (1) DOI: 10.1038/s41598-021-89811-2

Read Full Post »

For media inquiries contact: Kim Kaplan, 301-504-1637

ARS News Service ARS News Service Honey bee on an aster flower.

In the fall, in Iowa, honey bees gather pollen from asters and other flowers that were found to have higher levels of some nutrients that may better support bee colonies through a cold winter. Pollens to Fit A Honey Bee’s Every Season For media inquiries contact: Kim Kaplan, 301-504-1637 Whether the pollen honey bees collect comes from spring or fall flowers can be a vital factor in supporting the annual cycle of behaviors that sustain a honey bee colony, according to a study by U.S. Department of Agriculture’s Agricultural Research Service scientists. Biologists know that many animals such as deer or elk have different nutritional requirements throughout the year depending on the season. These differences in nutrient needs are supported by the plants in the areas where the animals live. In the spring, nutrient-packed resources such as plant shoots meet the elevated nutritional demands of rearing young. In the fall, lipid-rich seeds and fruit supply high-calorie reserves that provide fat stores for the during winter. “We thought there might be a similar relationship between honey bee nutritional needs and nutrients in seasonal pollens. In the spring and summer, honey bee colonies concentrate on raising new bees. In the fall, they shift to preparing for a winter that is often spent in the hive surviving the cold. These activities may have different nutritional needs,” explained ARS entomologist Gloria DeGrandi-Hoffman, who led the study. She is the research leader of the ARS Carl Hayden Bee Research Center in Tucson, Arizona. “Determining the nutritional needs of honey bees at different times of the year and how they are met with pollens from different seasonal flowers is a key to maintaining the health of honey bee colonies. With more specific information about nutrients in seasonal pollens, seed mixtures for pollinator plantings could be customized by location and season and seasonal pollen substitute diets could be developed,” DeGrandi-Hoffman said. To determine if nutrients in spring and fall pollens differ and if their nutrients align to support seasonal activities, the scientists compared spring and fall pollen collected by bees in central Iowa and southern Arizona. Though the types of flowers from which bees foraged in the spring differed between Iowa and Arizona, the spring pollens were similar in many nutrients, especially in the essential amino acids and many fatty acids needed to rear new bees. One interesting difference between spring pollens from Iowa and Arizona was that spring Iowa pollen had higher levels of the essential fatty acid, omega-3. The study found higher levels of omega-3 were associated with honey bees having larger hypopharyngeal glands (HPG). HPG produce a jelly that is fed to the queen (royal jelly) and young developing bees (larvae); larger HPG make more jelly, which allows more worker bees to be raised. “This suggests clover species, which largely made up the spring Iowa pollen, could be an important nutrient source for colony growth since it provides high levels of omega-3, and therefore clover should be included in pollinator plantings,” DeGrandi-Hoffman said. Fall flowers species not only differed between Iowa and Arizona, so did the nutrients they provided to the bees. Fall pollen from Iowa had higher levels of certain amino acids and lipids (fats). “Higher concentrations of these amino acids and lipids in fall Iowa pollen may better support honey bee colonies confined during the winter” said DeGrandi-Hoffman. “Honey bees are not confined for long periods during southern Arizona winters and may not require the same level of fat stores.” Spring Iowa pollen mostly came from clover species along with honeywort and plains mustards, while fall Iowa pollen primarily came from flowers in the aster family with small amounts from allium, partridge pea, ragweed and goldenrod species. Spring Arizona pollen was exclusively from mustard species, while fall Arizona pollen was mostly wooly bursage (Ambrosia), sandasters and cinchweeds. The Agricultural Research Service is the U.S. Department of Agriculture’s chief scientific in-house research agency. Daily, ARS focuses on solutions to agricultural problems affecting America. Each dollar invested in agricultural research results in $17 of economic impact.
Interested in reading more about ARS research? Visit our news archive U.S. DEPARTMENT OF AGRICULTURE
Agricultural Research Service

Read Full Post »

USDA ARS News Service
Honey bee on a mountain mint flower

Gallic acid, a chemical in the pollen of this mountain mint flower, can enhance the honey bee’s gut health.Four Nutrients in Flower Pollens Improve Honey Bee Gut Health

For media inquiries contact: Kim Kaplan, 301-504-1637June 23, 2021
For the first time, four nutritional compounds found in different flowers have been directly proven to enhance gut health of honey bees, boosting their immune system and increasing lifespan, based on a study by U.S. Department of Agriculture’s Agricultural Research Service scientists.“We found that feeding caffeine, kaempferol, p-coumaric acid or gallic acid—all nutritional compounds found in the nectar and pollen of various flowers—improved the abundance and diversity of bacteria in the honey bees’ gut,” explained entomologist Arathi Seshadri. She is with the ARS Invasive Species and Pollinator Health Research Unit in Davis, California.Seshadri chose these four nutrients to test because they are naturally present in flowers favored by honey bees, and they had already been shown to improve honey bee lifespan and tolerance to a common pathogen, Nosema ceranae. Caffeine, for instance, also has been shown by researchers to make bees better learners and improve their memory of rewarding floral scent and nectar quality. This study is the next step in more specifically defining how some nutrients in flower pollen can help bees by showing a connection through improving the gut microbiome.The gut microbiome is the total amount and species of all the microorganisms and all of their collective genetic material present in the gut.“The beneficial impact of these nutrients, found in a wide variety of flowers, has implications for healthier hive management through designing better dietary supplements. It also reemphasizes the need for flowering habitats that can provide bees with access to a rich diversity of pollen and nectar sources,” Seshadri said.While the mechanism is not known for how these four nutrients enhance honey bees’ gut microbiome, p-coumaric acid has been suggested by other researchers to alter gut microbiome diversity by increasing the activity of honey bees’ immunity genes. This perturbs the growth of pathogens acquired while foraging.Example flower sources for these nutrients include: caffeine: citrus and coffee; gallic acid: mint, raspberry, sunflowers and apples; kaempferol: petunias, asters, canola and poppies; and p-coumaric acid: buckwheat, roses, and clover.While caffeine had the single greatest impact, all the four nutrients resulted in the increase in abundance of CommensalibacterSnodgrassella and Bombella bacteria, all of which are considered important core bacteria for a healthy honey bee gut.Changes in the honey bees’ microbiome were seen immediately, just three days after they received the supplements.The growth spurt in the gut microbiome reached a plateau by six days after supplementing the diet with each of the floral nutrients and the levels reset to the original baseline levels when supplements were discontinued.“This fast response shows how much of an impact manipulating honey bees’ diet may have on their microbiome and reiterates the need for diverse flowering plants that can provide bees with ready access to these nutrients,” Seshadri said.

The study was published in the Journal of Applied Microbiology.
The Agricultural Research Service is the U.S. Department of Agriculture’s chief scientific in-house research agency. Daily, ARS focuses on solutions to agricultural problems affecting America. Each dollar invested in agricultural research results in $17 of economic impact.

Read Full Post »

Pollen-sized technology protects bees from deadly insecticides

Cornell University

27-May-2021 7:05 PM EDT, by Cornell Universityfavorite_border

Newswise: Pollen-sized technology protects bees from deadly insecticides

Nathan Reid

A Beemmunity employee, Abraham McCauley, applies a pollen patty containing microsponges to a hive as part of colony trials.

Newswise — ITHACA, N.Y. – A Cornell University-developed technology provides beekeepers, consumers and farmers with an antidote for deadly pesticides, which kill wild bees and cause beekeepers to lose around a third of their hives every year on average.

An early version of the technology ­– which detoxified a widely-used group of insecticides called organophosphates – is described in a new study, “Pollen-Inspired Enzymatic Microparticles to Reduce Organophosphate Toxicity in Managed Pollinators,” published in Nature Food. The antidote delivery method has now been adapted to effectively protect bees from all insecticides, and has inspired a new company, Beemmunity, based in New York state. 

Studies show that wax and pollen in 98% of hives in the U.S. are contaminated with an average of six pesticides, which also lower a bee’s immunity to devastating varroa mites and pathogens. At the same time, pollinators provide vital services by helping to fertilize crops that lead to production of a third of the food we consume, according to the paper.

“We have a solution whereby beekeepers can feed their bees our microparticle products in pollen patties or in a sugar syrup, and it allows them to detoxify the hive of any pesticides that they might find,” said James Webb, a co-author of the paper and CEO of Beemmunity.

First author Jing Chen is a postdoctoral researcher in the lab of senior author Minglin Ma, associate professor in the Department of Biological and Environmental Engineering in the College of Agriculture and Life Sciences (CALS). Scott McArt, assistant professor of entomology in CALS, is also a co-author.

The paper focuses on organophosphate-based insecticides, which account for about a third of the insecticides on the market. A recent worldwide meta-analysis of in-hive pesticide residue studies found that, under current use patterns, five insecticides posed substantial risks to bees, two of which were organophosphates, McArt said. 

The researchers developed a uniform pollen-sized microparticle filled with enzymes that detoxify organophosphate insecticides before they are absorbed and harm the bee. The particle’s protective casing allows the enzymes to move past the bee’s crop (stomach), which is acidic and breaks down enzymes.

Microparticles can be mixed with pollen patties or sugar water, and once ingested, the safe-guarded enzymes pass through the acidic crop to the midgut, where digestion occurs and where toxins and nutrients are absorbed. There, the enzymes can act to break down and detoxify the organophosphates.

After a series of in vitro experiments, the researchers tested the system on live bees in the lab. They fed a pod of bees malathion, an organophosphate pesticide, in contaminated pollen and also fed them the microparticles with enzyme. A control group was simultaneously fed the toxic pollen, without the enzyme-filled microparticles.

Bees that were fed the microparticles with a high dose of the enzyme had a 100% survival rate after exposure to malathion. Meanwhile, unprotected control bees died in a matter of days.

Beemmunity takes the concept a step further, where instead of filling the microparticles with enzymes that break down an insecticide, the particles have a shell made with insect proteins and are filled with a special absorptive oil, creating a kind of micro-sponge. Many insecticides, including widely-used neonicotinoids, are designed to target insect proteins, so the microparticle shell draws in the insecticide where it is sequestered inert within the casing. Eventually, the bees simply defecate the sequestered toxin.

The company is running colony-scale trials this summer on 240 hives in New Jersey and plans to publicly launch its products starting in February 2022. Products include microparticle sponges in a dry sugar medium that can be added to pollen patties or sugar water, and consumer bee feeders in development.

“This is a low-cost, scalable solution which we hope will be a first step to address the insecticide toxicity issue and contribute to the protection of managed pollinators,” Ma said.

Jin-Kim Montclare, a researcher at New York University’s Tandon School of Engineering, is a co-author.

The technology is licensed through Cornell’s Center for Technology Licensing (CTL). Ma and McArt are advisors for Beemmunity.

The study was funded by the U.S. Department of Agriculture’s National Institute of Food and Agriculture, the National Institutes of Health and the National Science Foundation.

For additional information, see this Cornell Chronicle story.

Read Full Post »

Scientists breed fungus that fights Varroa mites

USDA ARSWFP-ARS-varroa-mite.jpgScientists have found that a strain of the fungus Metarhizium anisopliae is deadly to Varroa mites, such as this one on an adult worker honey bee’s thorax. Team from Washington state uses ‘directed evolution’ to develop natural tool against honeybee nemesis.

Tim Hearden | May 28, 2021

Farm Futures Summit and Boot Camp 2021

A team of West Coast scientists thinks it has developed a chemical-free way of neutralizing Varroa mites, which are largely blamed for honeybee die-offs that decimate up to half of hives nationwide each year.

Washington State University entomologists joined forces with an Olympia, Wash.-based business and others in a two-year effort to breed a strain of Metarhizium, a common beneficial fungus found in soils, to work against the mites.

Metarhizium anisopliae has been used for decades to combat numerous soil-dwelling pests around the world, including the sugarbeet root maggot and the Japanese beetle, according to the USDA’s Agricultural Research Service. But it doesn’t survive in higher temperatures.

So post-doctoral researcher Jennifer Han and the other scientists used “directed evolution” to develop a strain that could survive in hives that typically get as hot as 95 degrees, said Steve Sheppard, professor in WSU’s Department of Entomology. Sheppard was a corresponding author of the paper on the research published this month in Scientific Reports.

Related: Scientists follow bees to study colony survival

“Importantly, in an era of declining honey bee health, the strains of Metarhizium created in these experiments were able to control Varroa mites and may provide beekeepers with an alternative to chemical acaricides,” the scientists wrote. “Additionally, it is possible that the methods presented here could be applied to fungi or other biocontrol agents targeting other arthropod pests.”

The team’s next tasks will be to develop delivery methods for beekeepers to apply the fungus in hives and get approval from the U.S. Environmental Protection Agency to use it in agriculture, according to the university.

Mites feed on bees

Varroa mites feed on honeybees, weakening their immune systems and making them more susceptible to viruses, the scientists explain. The mites are considered a major cause of colony collapse disorder, an annual phenomenon in which beekeepers have lost nearly half their hives in some winters.

The average loss per beekeeper nationwide in 2020 was 35.5%, down from 43.5% in 2019 and a record 50.2% in 2018, according to the Bee Informed Partnership.

WSU scientists say Metarhizium is like a mold, not a mushroom. When its spores land on a Varroa mite, they germinate, drill into the mite and proliferate, killing it from the inside out, the university explains. The fungus won’t harm bees, which have a high immunity to the spores.

Related: Coalition seeks to scale up pollinator protection efforts

Han took fungal spores from dead mites and selected for virulence, creating a strain that survives at the higher temperatures, Sheppard said. She and assistant research professors Nicholas Naeger and Brandon Hopkins screened more than 27,000 mites for levels of infection to get the new strain.

“It was two solid years of work, plus some preliminary effort,” Han said. “We did real-world testing to make sure it would work in the field, not just in a lab.”

Expert consulted

The team also worked with Paul Stamets, co-owner and founder of Olympia-based business Fungi Perfecti, who previously helped the university in a research project that used mycelium extract to reduce virus levels in honeybees.

The projects will provide beekeepers with natural alternatives to chemical treatments, such as miticides, for which the pests are starting to develop a resistance, the scientists wrote.

“It’s providing a real one-two punch, using two different fungi to help bees fight Varroa,” Stamets said. “The extracts help bee immune systems reduce virus counts while the Metarhizium is a potentially great mite biocontrol agent.”

Read Full Post »


  • News Release 27-May-2021

Fungus fights mites that harm honey bees

New fungus strain could provide a chemical-free method to help honey bees

Washington State University

Research NewsShare Print E-Mail

IMAGE
IMAGE: Varroa destructor mites in a petri dish before being exposed to the new strain of metarhizium fungi. view more Credit: Washington State University

PULLMAN, Wash. — A new fungus strain could provide a chemical-free method for eradicating mites that kill honey bees, according to a study published this month in Scientific Reports.

A team led by Washington State University entomologists bred a strain of Metarhizium, a common fungus found in soils around the world, to work as a control agent against varroa mites. Unlike other strains of Metarhizium, the one created by the WSU research team can survive in the warm environments common in honey bee hives, which typically have a temperature of around 35 Celsius (or 95 F).

“We’ve known that metarhizium could kill mites, but it was expensive and didn’t last long because the fungi died in the hive heat,” said Steve Sheppard, professor in WSU’s Department of Entomology and corresponding author on the paper. “Our team used directed evolution to develop a strain that survives at the higher temperatures. Plus, Jennifer took fungal spores from dead mites, selecting for virulence against varroa.”

Jennifer Han, a post-doctoral researcher at WSU, led the breeding program along with WSU assistant research professors Nicholas Naeger and Brandon Hopkins. Paul Stamets, co-owner and founder of Olympia-based business Fungi Perfecti, also contributed to the paper. Stamets is a fungi expert, well-known for using several species in applications ranging from medicine to biocontrol.

Varroa destructor mites, small parasites that live on honey bees and suck their “blood,” play a large role in Colony Collapse Disorder, which causes beekeepers to lose 30-50% of their hives each year. The mites feed on bees, weakening their immune systems and making them more susceptible to viruses.

The main tools beekeepers use to fight varroa are chemicals, such as miticides, but the tiny pests are starting to develop resistance to those treatments, Naeger said.

Metarhizium is like a mold, not a mushroom. When spores land on a varroa mite, they germinate, drill into the mite, and proliferate, killing it from the inside out. Bees have high immunity against the spores, making it a safe option for beekeepers.

Stamets, who did some of the initial testing with Metarhizium that showed the fungus couldn’t survive hive temperatures, was impressed by the work done by the WSU researchers.

“Science progresses through trial and error, and my technique wasn’t economical because of the hive heat,” he said. “But Jennifer did enormous amounts of culture work to break through that thermal barrier with this new strain. It’s difficult to really appreciate the Herculean effort it took to get this.”

Han and Naeger screened more than 27,000 mites for levels of infection to get the new strain.

“It was two solid years of work, plus some preliminary effort,” Han said. “We did real-world testing to make sure it would work in the field, not just in a lab.”

This is the second major finding to come from WSU’s research partnership with Stamets involving bees and fungi. The first involved using mycelium extract that reduced virus levels in honey bees.

“It’s providing a real one-two punch, using two different fungi to help bees fight varroa,” Stamets said. “The extracts help bee immune systems reduce virus counts while the Metarhizium is a potentially great mite biocontrol agent.”

The next step is to seek approval from the Environmental Protection Agency to use Metarhizium on hives used in agriculture. The team must also finalize delivery methods for beekeepers to apply the fungus in hives.

“We hope in 10 years that, rather than chemical miticides, Metarhizium is widely used to control Varroa mites,” Sheppard said. “And that the mite problem for beekeepers has been significantly reduced.”

The team thinks the methods they developed to evolve Metarhizium for varroa control could be used to improve biocontrol agents in other crop systems as well.

###

The majority of the funding for this work came from private donations from individuals and foundations. Additional funding came from Washington State Department of Agriculture (WSDA) Specialty Crop Block Grant K2531 and the USDA National Institute of Food and Agriculture, Hatch 1007314.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.Share Print E-Mail

Media Contact

Jennifer Han
jennifer.o.han@wsu.edu

 @WSUNews

http://www.wsu.edu 



More on this News Release

Fungus fights mites that harm honey bees

Washington State UniversityJournalScientific ReportsFunderWashington State Department of Agriculture, United States Department of Agriculture National Institute of Food and Agriculture

Read Full Post »

Bees are fundamental to our lives, says FAO Director-General

20 May 2021, Rome – Today, on the occasion of the fourth observance of World Bee Day, FAO Director-General QU Dongyu highlighted the important role that bees and other pollinators play in ensuring ecosystems services, food security, nutrition, and livelihoods, at a high-level virtual gathering under the theme ‘Bee engaged – Build Back Better for Bees’.

“The 2030 Agenda calls for the eradication of hunger and poverty” said the Director-General. “We need food systems that are more efficient, inclusive, resilient and sustainable. Bees play a major role in that. They are important to our food security, nutrition and the environment.”

“It is estimated,” said the Director-General, “that the value of pollination services to global food production is worth up to USD 600 billion annually.”

“FAO is leading the global celebrations of the 2021 International Year of Fruits and Vegetables,” continued the Director-General. “[This year] it is particularly important to highlight the role of pollinators for fruits and vegetables.”

Three out of four leading food crop types across the globe depend, at least in part, on pollinators. However, in many regions bees and other wild pollinators such as birds, bats, butterflies and beetles are declining in abundance and diversity. Most of these drivers are manmade. The absence of pollinators would majorly affect coffee, apples, almonds, tomatoes and cocoa, to name just a few.

Pollination is not only crucial to ensure food security but can also help diversify livelihoods of smallholder farmers, who have been hit hard by the impacts of the COVID-19 pandemic.

COVID-19 recovery activities can also decrease drivers of biodiversity and ecosystem loss – simultaneously lowering pandemic risks while safeguarding our pollinator communities. Pandemic risk is driven by increased land use change, habitat degradation, agricultural expansion and unsustainable intensification, which also negatively impact pollinator communities.

The Director-General urged attendees of today’s event to work together saying – “Bee engaged and build back better for bees!”

Subsequent speakers called for global cooperation and solidarity to counter the threats posed by the COVID-19 pandemic to food security and agricultural livelihoods alongside prioritizing environmental regeneration and pollinator protection. The high-level speakers included Jože Podgoršek (Minister for Agriculture, Forestry and Food of the Republic of Slovenia); Julia Klöckner (Federal Minister for Food and Agriculture of the Federal Republic of Germany); Dr Taïga (Minister of Livestock, Fisheries and Animal Industries of the Republic of Cameroon); David Cooper (Deputy Executive Secretary, United Nations Convention on Biological Diversity); and Jambaltseren Tumur-Uya (State Secretary of the Ministry of Food, Agriculture and Light Industry of Mongolia).

Strengthening Collaboration

The opening session was followed by the signing of a Memorandum of Understanding (MoU) between FAO Director-General and Jeff Pettis, the President of Apimondia (the World Federation of Beekeepers’ Associations). The MoU builds on more than 60 years of collaboration and is set to strengthen the collaboration between FAO and Apimondia for sustainable beekeeping. The agreed workplan places particular emphasis on leveraging the development resources offered by beekeeping to address crucial issues affecting rural communities, which will allow the two organizations to synergize and assist countries in achieving the Sustainable Development Goals (SDGs) while promoting and protecting bees and pollinators.

Engaging technical presentations and a wide-ranging technical discussion followed with world-renowned experts: Olivier Badibanga, Managing Director of API-CONGO; Jane Stout, Professor of Natural Sciences, Trinity College Dublin; Meriem Hammal, Beekeper, Algeria; Lucas Garibaldi, Director, Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural (IRNAD), Argentina; and Phrang Roy, Coordinator, Indigenous Partnership for Agrobiodiversity and Food Sovereignty, and Founding Chairman, North East Slow Food and Agrobiodiversity Society (NESFAS), India. Max Rünzel, CEO of HiveTracks and Project Coordinator of the World Bee Count (launched on World Bee Day 2020), gave a special update on the World Bee Count and AI-driven climate-smart beekeeping.

The formal World Bee Day observance concluded with closing remarks from Beth Bechdol, FAO Deputy Director-General, who thanked the Republic of Slovenia, Apimondia and all the speakers for their valuable contributions. Bechdol echoed the Director-General’s earlier words by underlining the unique and irreplaceable pollination services bees provide – supporting peoples’ livelihoods and the planet. “We all have a role to play in protecting bees and other pollinators to safeguard biodiversity and strengthen agri-food systems,”

Read Full Post »

HOME>FARM BUSINESS>FARM OPERATIONS>SUSTAINABILITY

Sustainable IPM efforts target insect pheromone use

TAGS: CROPSTodd Fitchettewfp-todd-fitchette-desert-broccoli-71.jpg

A biologically safe attractant using pheromones to entice honeybee visits to broccoli for seed is one of several new ag tech ideas promoting sustainable agriculture practices.A company is using a transgenic plant to create low-cost pheromones that could revolutionize pest control.

Todd Fitchette | Apr 21, 2021

Attracting bees to broccoli is just one of many ways a California ag tech company has its mind set on sustainable agriculture with global implications.

Scientists at the Riverside-based ISCA are using a transgenic plant to create low-cost pheromones that could revolutionize pest control and integrated pest management (IPM) efforts in agriculture and beyond.https://7456b58e549c0abcddebe4cfdc5b0937.safeframe.googlesyndication.com/safeframe/1-0-38/html/container.html

The example of bees and broccoli was demonstrated earlier this year near Yuma, Ariz. By placing a safe pheromone attractant on broccoli grown for seed production, colonies of managed honeybees were attracted to the plants, even during high wind events common during the winter months in the desert region of southwest Arizona.

The use of an attractant to entice honeybees to visit plants needing pollination is just one of several projects, according to ICSA Chief Executive Officer Agenor Mafra-Neto. Moreover, the bee attractant, which looks like a dollop of toothpaste applied to the top of the broccoli plants, could have implications other crops needing pollination by honeybee colonies. Studies in almonds suggest a 5-15% boost in fruit set. Those studies are ongoing.

Mating disruption – the art of fooling male insects into thinking female insects are in an area they are not by means of filling the air with the sex pheromone scent they emit – is yet another sustainable way to improve IPM efforts in agricultural systems. In this case ISCA scientists are using genetically modified strains of camelina plants to create the insect sex pheromones.

These efforts have shown themselves successful in protecting vineyards in Argentina against the European grapevine moth.

USDA funding

According to a company statement, the camelina plant efforts received U.S. Department of Agriculture funding to develop pheromones from natural resources over the use of standard chemical synthesis techniques. A $650,000 grant from the USDA’s National Institute of Food and Agriculture (NIFA) came after a $100,000 NIFA grant that kickstarted the project.

“Pheromone and other semiochemical controls are the future of crop protection, and ISCA’s breakthrough biological pheromone synthesis will propel agriculture into a more lucrative and sustainable enterprise,” Mafra-Neto said in a prepared statement.

Pheromone use is growing in popularity, particularly for mating disruption efforts that are proving themselves successful in agricultural systems. Almond growers are using pheromone attractants in mating disruption efforts against the Navel orangeworm. Unlike with pesticides, insects do not develop resistance against pheromone products.

Mafra-Neto points to the use of the camelina plant, a cousin of broccoli and canola, as a lower-cost method to create pheromones. Biosynthesis in plants eliminates the need to use petroleum-based chemicals as feedstock and bypasses most of the complex organic chemistry steps now required in pheromone production, he said.

Attract-and-kill

Moreover, ISCA studies are also looking at attract-and-kill products that entice targeted insects to a specific location that includes an insecticide capable of killing that insect. Rather than broadcast a chemical insecticide across large swaths of land or to rows of trees, the attract-and-kill method draws insects to a specific location through pheromones. The inclusion of pesticide materials capable of killing the pest when it feeds on or touches the formulation, allows this method to be targeted and safer for the environment.

The attract-and-kill method can greatly reduce the number of chemical pesticides applied on crops for insect control. It also protects non-targeted pests, including pollinators and beneficial insects, because the pheromones used to attract target pests are specific to those species.

Current attract-and-kill studies are ongoing in cotton, corn, and soybeans.

Another topic of study includes the idea of repellants, or semiochemicals that can cause insects to avoid specific plants. As studies in California avocados are ongoing on this front, Mafra-Neto believes forestry systems can use such technology to repel the bark beetle, which is responsible for widespread forest damage and explosive forest fires because of all the dead trees.

Read Full Post »

BEES.TED.COM

Bees can remember human faces — and 7 other surprising facts about these important insects

Mar 12, 2021 / Meghan Miner Murray

Share This Idea

Unsplash

Most people know bees for two things: their sweetness (in the form of honey) or their stings. But they’re so much more than that. Honeybees, for example, live in highly structured social groups where each bee has a role to play. Some bees are solitary and can chew holes in wood. Others can be blue or white or green. In fact, there are more than 20,000 species of bees worldwide.

Importantly for humans, bees are crucial to our planetary health and survival — as pollinators, they are responsible for about a third of the food we eat. Yet bee populations worldwide are declining, largely due to climate change. Carbon emissions are resulting in temperature extremes that are causing habitat loss, a rise in parasitic mites and predators that thrive in warmer temperatures, and increased pesticide use to deal with these new pests. All of these factors impact bees in both big ways (colony collapse disorder) and small (shifting winds make bees less efficient). 

Here are 8 surprising facts you didn’t know about these amazing insects, and how you can help protect them.

Bees put the honey in honeymoon 

There may be more than 20,000 bee species, but only members of the genus Apis (11 known species) make honey. We may owe bees — and ancient Norse drinking habits — for the term “honeymoon.” The syrupy sweetener was an ingredient in the earliest known alcoholic beverages, including mead, a fermented honey drink. Mead played an important role in Nordic marriage rites as early as the 5th century. It’s believed that it was a tradition for newlywed couples to consume copious amounts of mead during the first full moon cycle, or month, of marriage. The practice is one of several proposed origins of the honeymoon’s etymology. 

Some bee species defend their hives with giant balls of heat

Like all insects, bees are cold-blooded, which means their body temperature is typically similar to their surrounding environment. But within the hive, where the developing brood lives, bees maintain a steady temperature of around 92-93 degrees Fahrenheit year-round. Using their wings, bees can fan hot air out of the hive to cool an area or vibrate their flight muscles to heat it. 

As a changing climate brings new predators their way, some bee species have taken their thermoregulation abilities to the next level. Scientists have observed Japanese honeybees pounce on the hive-invading, bee-eating Asian giant hornets (also known as murder hornets) that cross their threshold. Together they create a giant ball around the hornet and use the same hive-heating techniques to cook the invader alive

Bees help farmers grow better food and keep food prices down 

Bees are highly efficient pollinators and are essential to plant diversity. When bees are employed to pollinate crops such as avocados, blueberries and cucumbers, fruit yields and weight increase dramatically compared to crops grown in the absence of bees or other pollinators. But climate change could threaten our food systems. 

As weather patterns continue to shift, many animal species will move to more ideal climate conditions when their previous habitats become less favorable. But experts fear that bees aren’t adapting to shifting temperatures like some other species, which could lead to rapid population decline. In some areas, flowers are also starting to bloom earlier with warming temperatures, and it’s unclear how bees will adapt to these seasonal changes. This could spell big trouble for both wild and farmed crops. “With the declining numbers of bees, the cost of over 130 fruit and vegetable plants that we rely on for food is going up in price,” says Noah Wilson-Rich, biologist and CEO of Best Bees, in his TEDxBoston Talk. 

There are bees that can age backwards — really 

Some honeybees have the remarkable ability to age in reverse. When there’s a lack of young worker bees, older bees can revert to their more energetic, younger selves to take on the task. In fact, these bees end up living longer to pick up the slack. This incredible phenomenon is currently under investigation by researchers to better understand the underlying mechanisms and potential applications for age-related dementia in humans. 

Scientists use bees to study serial killers 

Criminologists developed a statistical technique called geographic profiling (GP) in order to study repeat-offense crimes, like serial killings and burglaries. Based on the locations of the crimes, police can make educated guesses about where a suspect might live or visit regularly. That’s because in general, repeat offenders avoid committing crimes close to where they live so they can avoid detection — but they remain close enough to home for convenience. It turns out bees’ feeding patterns are similar. 

Bees avoid detection by predators and parasites by creating a distraction zone — they leave flowers closest to their nest entrance untouched and feed further away from the hive. In 2008, a team of researchers observed bees visiting different flowers, and attempted to locate their hive based on existing GP techniques. They found that bees’ foraging patterns were as reliable and predictable as humans. Criminology experts can now use insights from bee patterns to refine geographic profiling methods.

Honeybees live according to a strict hierarchy 

There are three types of honeybees: queens, workers and drones. There’s only one queen, and she’s typically the largest and longest-living individual within a hive. Worker bees are all female and the only bees with stingers. When a bee stings, it dies, leaving behind a banana-like scent that warns the other worker bees of danger. And while workers are genetically identical to the queen, only the crown can lay eggs. In fact, queen bees can release over 1,000 eggs each day for years. These eggs are fertilized with sperm from dozens of male drones whose only function is to fertilize the queen during a once-in-a-lifetime mating flight (the drones die after mating.) 

Bees can remember human faces 

Bees may have brains the size of poppy seeds, but they’re able to pick out individual features on human faces and recognize them during repeat interactions. In one study, scientists paired images of human faces with sugar-laced water and found that bees recognized and remembered faces associated with the sweet reward — even when the reward was absent. This keen perception not only helps these highly social creatures recognize each other, but it also helps them recognize and return to flowers that produce more pollen.

It’s not too late to save bees — and YOU can help 

Fortunately, you can take action to help bees where you live. With just a smartphone and a willingness to learn, you can contribute to various citizen science projects. A citizen science effort in Michigan, for example, helped researchers discover that special ground-dwelling bees that pollinate squash and pumpkin fare better on farms where the soil is not trampled or tilled — this finding has real implications for our food systems. Other ongoing programs help researchers collect baseline data on wild bee populations, including North America-based BeeBlitzes, the University of Illinois’ BeeSpotter, Australia’s Wild Pollinator Count and Canada’s Bumble Bee Watch.   

Your own backyard is another place to start. Plant more wildflowers, don’t use pesticides that harm bees and apply them before flowering begins. If you live in the city, set up or join a community rooftop garden. Interestingly, bees can have higher survival rates and produce more honey in the city compared to the crop-dotted countryside, Wilson-Rich says. And, if you want to really get in on the buzz, consider keeping your own honeybee hive — you’ll bolster your local bee population and reap some sweet rewards.

Watch Noah Wilson-Rich’s TEDxBoston Talk: 

About the author

Meghan Miner Murray is a freelance science and travel writer based in Kona, Hawaii. She once was rescued from a sinking ship in the North Atlantic. Read more about her and her work at meghanminermurray.com.

Read Full Post »

From PestNet

FEBRUARY 17, 2021

Neonicotinoid pesticide residues found in Irish honey

by Thomas Deane, Trinity College Dublin

honey
Credit: CC0 Public Domain

Researchers from Trinity and Dublin City University found that Irish honey contained residues of neonicotinoid insecticides.

Neonicotinoids are the most widely used group of insecticides globally, used in plant protection products to control harmful insects.

Neonicotinoids are systemic pesticides. Unlike contact pesticides, which remain on the surface of the treated parts of plants (e.g. leaves), systemic pesticides are taken up by the plant and transported throughout its leaves, flowers, roots and stems, as well as incorporated into pollen and nectar.

In the European Union, their use is now restricted due to concerns about risks to bees and other non-target organisms. At the time of sampling for this study, their use was still approved in Ireland for certain agricultural crops.

Key findings

  • Of 30 honey samples tested, 70% contained at least one neonicotinoid compound
  • Almost half (48%) the samples contained at least two neonicotinoids
  • Exposure to pesticides does not just occur in agricultural settings
  • This research for the first time has identified the presence of clothianidin, imidacloprid and thiacloprid in Irish honey from a range of hive sites across a range of land use types
  • The proportion and concentration of neonicotinoids in honeys from both agricultural and urban habitats, compared with semi-natural or other land covers, suggests that exposure of bees to neonicotinoids can potentially occur in a variety of environments

Residue levels were below the admissible limits for human consumption according to current EU regulations, and thus pose no risk to human health.

However, the average concentration of one compound (imidacloprid) was higher than concentrations that have been shown in other studies to induce negative effects on honey and bumble bees.

Dr. Saorla Kavanagh, lead author on the study, currently working at the National Biodiversity Data Centre, said: “Given that these compounds have been shown to have adverse effects on honey bees, wild bees, and other organisms, their detection in honey is of concern, and potential contamination routes should be explored further.”

Professor Jane Stout, from Trinity’s School of Natural Sciences, said: “These results suggest that bees and other beneficial insects are at risk of exposure to contaminants in their food across a range of managed habitats—not just in agricultural settings. And even though we found residues at low concentrations, prolonged exposure to sublethal levels of toxins can cause effects that are still not fully understood by scientists or regulators. Therefore, we shouldn’t relax restrictions on their use.”

Dr. Blánaid White, DCU, said: “Our findings are consistent with others from outside Ireland, and neonicotinoids unfortunately seem to be ubiquitous in honeys worldwide. It’s reassuring that residues do not exceed safe levels, but it is an important warning that neonicotinoids should not be reintroduced into Irish environments, as they could potentially cause health or environmental concerns.”


Explore furtherOn balance, some neonicotinoid pesticides could benefit bees: study


Provided by Trinity College Dublin

Read Full Post »

Older Posts »