Feeds:
Posts
Comments

Archive for the ‘Gene editing’ Category

Press release

Plans to unlock power of gene editing unveiled

Use of gene editing technologies to be enabled to help better protect the environment.From:Department for Environment, Food & Rural AffairsFood Standards Agency, and The Rt Hon George Eustice MPPublished29 September 2021

Combine harvester at work on the Yorkshire Wolds
Plans to unlock potential benefits of gene editing set out today

New plans to unlock the power of gene editing to help our farmers grow more resistant, more nutritious and more productive crops have been published as part of the government response to the gene editing consultation, announced today (29 September) by Environment Secretary George Eustice.

The response sets out how we plan to pave the way to enable use of gene editing technologies, which can help better protect the environment.

Gene editing is a tool that makes plant breeding more precise and efficient so we can breed crops that are more nutritious, resistant to pests and disease, more productive and more beneficial to the environment, helping farmers and reducing impacts on the environment.

Research could lead to sugar beet varieties resistant to viruses that can cause serious yield losses and costs to farmers unless pesticides are used. Such new varieties would help make our farmers more productive and, importantly, also reduce the need for chemical pesticides, protecting our bees and other pollinating insects.

Gene editing is different from genetic modification, because it does not result in the introduction of DNA from other species and creates new varieties similar to those that could be produced more slowly by natural breeding processes – but currently they are regulated in the same way as genetically modified organisms.

Leaving the EU allows the UK to set our own rules, opening up opportunities to adopt a more scientific and proportionate approach to the regulation of genetic technologies. As a first step, the government will change the rules relating to gene editing to cut red tape and make research and development easier.

The focus will be on plants produced by genetic technologies, where genetic changes could have occurred naturally or could have been a result of traditional breeding methods.

Environment Secretary George Eustice said:

Gene editing has the ability to harness the genetic resources that nature has provided. It is a tool that could help us in order to tackle some of the biggest challenges that we face – around food security, climate change and biodiversity loss.

Outside the EU, we are able to foster innovation to help grow plants that are stronger and more resilient to climate change. We will be working closely with farming and environmental groups to ensure that the right rules are in place.

Defra chief scientific advisor Gideon Henderson said:

Gene editing technologies provide a more precise way of introducing targeted genetic changes – making the same types of changes to plants and animals that occur more slowly naturally or through traditional breeding.

These tools enable us to harness the richness of natural variation to build better crops, speeding up a process humans have done through breeding for hundreds of years.

There are exciting opportunities to improve the environment, and we can also produce new varieties that are healthier to eat, and more resistant to climate change.

Scientists will continue to be required to notify Defra of any research trials. The planned changes will ease burdens for research and development involving plants, using technologies such as gene editing, to align them with plants developed using traditional breeding methods.

The next step will be to review the regulatory definitions of a genetically modified organism, to exclude organisms produced by gene editing and other genetic technologies if they could have been developed by traditional breeding. GMO regulations would continue to apply where gene editing introduces DNA from other species into an organism.

The government will consider the appropriate measures needed to enable gene edited products to be brought to market safely and responsibly. In the longer term, this will be followed by a review of England’s approach to GMO regulation more broadly.

We are committed to the very highest standards of environmental and food safety in the UK. There will be no weakening of our strong food safety standards. Gene edited foods will only be permitted to be marketed if they are judged to not present a risk to health, not mislead consumers, and not have lower nutritional value than their non-genetically modified counterparts.

The government will continue to work with farming and environmental groups to develop the right rules and to ensure robust controls are in place to maintain the highest food safety and environmental protection standards, while supporting the production of healthier food.

Professor Robin May, the Food Standards Agency’s Chief Scientific Adviser, said:

There are significant benefits to changing the way we regulate genetic technologies, to make sure the system is as up to date as possible and properly takes into account new technologies and scientific discoveries.

We support giving consumers choice and recognise the potential benefits that GE plants and animals may bring to the food system.

We are working closely with Defra and a range of other partners to ensure that potential changes to the regulation of genetic technologies will maintain the high food standards that UK consumers currently enjoy.

Samantha Brooke, Chief Executive of the British Society of Plant Breeders, said:

Changing the way new agricultural breeding technologies are regulated, by taking gene editing out of the scope of GMO rules, will encourage research and innovation to develop healthier, more nutritious food, and to make farming systems more sustainable and resilient in the face of climate change.

Gene editing involves making desired changes to a plant or animal which could have occurred naturally or through conventional breeding, but more quickly and with greater precision. Developing an improved crop variety using conventional breeding – for example to improve its nutritional quality or resistance to disease – can take up to 15 years, but gene editing can help reduce that timescale significantly.

Without the contribution of plant breeding over the past 20 years, farmers would have produced 20% less food in this country, which means an extra 1.8 million hectares of land would have been needed to supply our food needs. That expansion would have impacted vulnerable ecosystems, and generated an extra 300 million tonnes of greenhouse gas emissions.

Current regulations on plant breeding and seeds support safer and more sustainable food production, and this regulatory system can also embrace new crop varieties produced using gene editing techniques, which replicate what plant breeders are already doing, but in a much quicker and more targeted way.

We strongly welcome the Government’s plan to make controls on gene editing more science-based. This sends a clear signal that the UK is set on a more pro-innovation trajectory outside the EU. It will certainly boost prospects for plant breeding companies large and small, as well as scientists in the public sector, to continue improving our food crops for the benefit of society and the environment.

Professor Helen Sang OBE, Head of Division of Functional Genetics and Development, The Roslin Institute and R(D)SVS, said:

Gene editing offers major opportunities to address the combined challenges of rapidly increasing global demand for healthy and nutritious food with the goal of net zero carbon emissions.

I welcome today’s announcement as a first step towards reducing unnecessary and unscientific regulatory barriers to the use of advanced breeding techniques which are precise and targeted, allowing us to make specific genetic changes.

Adopting a more proportionate and enabling approach to regulation will open up increased opportunities for international research collaboration, inward investment and technology-based exports, bringing a major boost for UK science.

Read Full Post »

‘Doing nothing is no longer an option’: 15 agriculture experts assess England’s long-awaited decision to ease restrictions on gene-edited crops

Science Media Centre | October 4, 2021

Print Friendly, PDF & Email
Credit: Si Barber/Financial Times
Credit: Si Barber/Financial Times

This article or excerpt is included in the GLP’s daily curated selection of ideologically diverse news, opinion and analysis of biotechnology innovation. It is posted under Fair Use guidelines.

The government have published a press release on new plans to unlock the potential benefits of gene editing as part of their response to the gene editing consultation.Follow the latest news and policy debates on agricultural biotech and biomedicine? Subscribe to our newsletter.SIGN UP

Prof Nick Talbot, Executive Director of The Sainsbury Laboratory, said:

We welcome the government’s announcement on genome editing. This technology will help plant breeders create new crop varieties to provide healthy and nutritious food in a sustainable way.  In the face of the climate emergency, we need new innovation in agriculture. We have to work together to make agriculture more sustainable and much less dependent on fossil fuels. Doing nothing is no longer an option.

Prof Dale Sanders, Director of the John Innes Centre, said:

I’m pleased that the Government is acting to change the regulation of gene edited plants and I welcome today’s announcement. But while DEFRA’s announcement is a step forward for crop trials, it is disappointing that the decision applies only to research and development.

“We will only see the benefits of these technologies if crops developed this way are able to reach supermarkets and customers.  It is frustrating when scientific breakthroughs cannot lead to genuine improvements to the foods that we eat.

This is an excerpt. Read the original post here.Related article:  Global scientists assess homeopathy-funded Séra

Read Full Post »

UK ready to pave the way for gene-edited crops

The UK government is to relax the regulation of gene-edited crops to enable commercial growing in England. The plants are to be tested and assessed in the same way as conventional new varieties.

Environment Secretary George Eustice said that he would be working closely with farming and environmental groups to help grow plants that are stronger and more resilient to climate change. “Gene editing has the ability to harness the genetic resources that nature has provided. It is a tool that could help us tackle some of the biggest challenges that we face.”

As a first step, legislation will be passed later this year to do away with the need for scientists to apply for a license to carry out open-air trials of a gene-edited crop that could have been produced through traditional cross-breeding.

Currently, the approvals process can take up to two months and cost several thousand pounds. The more significant change will take place next year when legislation will be brought forward to enable simple gene-edited crops to be regulated in the same way as any new variety for commercial development. The government is reviewing what measures it would need to bring in to maintain consumer choices, such as labeling and traceability.
 
In the longer term, ministers will review England’s approach to regulation covering all genetically modified organisms. This includes changes that might allow the commercial development and farming of gene-edited and genetically modified animals. Such animals can be made to be more productive, resistant to some diseases, and even better able to withstand hot weather.

Read the complete article at www.bbc.com.

Publication date: Wed 29 Sep 2021

Read Full Post »

The story behind the 100% public GM bean reaching Brazilian plates

Daniel Norero | August 31, 2021

Print Friendly, PDF & Email
Common bean. Credit: Portal Voz da Comunidade
Common bean. Credit: Portal Voz da Comunidade

This article or excerpt is included in the GLP’s daily curated selection of ideologically diverse news, opinion and analysis of biotechnology innovation.In some Brazilian supermarkets, it is already possible to buy a new genetically modified (GM) common bean, which bears the corresponding GM labeling as required by local regulations. Nothing about this event would be news, considering that Brazil is the second global power in the production of GM crops after the United States and has seen its stores full of products with GM labels. However, this new bean isn’t another of many GM corn and soybeans typically created by North American companies, but rather a 100% locally developed crop by scientists from a state-owned company in the Amazonian giant.

The journey for this new biotech bean to reach Brazilian markets was long and not free of obstacles. It began in the search for a solution to the troublesome Bean Golden Mosaic Virus (BGMV) that can wipe out more than half of a farmer’s bean plants. This pathogen is transmitted by the whitefly, and causes losses estimated at 300,000 tons per year, enough to feed 15 million people.

“BGMV is a serious problem in tomatoes, soybeans and other plants, but in beans it’s also transmitted by whiteflies in a persistent way. When the insect already acquires the virus, it begins to transmit it throughout its life,” says Francisco Aragão, senior researcher at the Brazilian Agricultural Research Corporation (EMBRAPA) and co-creator of the new Brazilian GM bean. “That is why it is difficult to develop a resistance strategy and it’s also known that if you have only one whitefly per plant, you can already have 100% infection.”

Dr. Francisco Aragao (right) and Dr. Josias Faria (left), “fathers” of the Brazilian GM bean. Photo taken in January 2020 in a GM bean field in the city of Río Verde, Goias state. Credit: Francisco Aragao.

Before the new GM bean, the only BGMV control methods were cultural management, biological control, and the use of pesticides to control the virus host -the whitefly- with little results. “The average application [of pesticides] in a season is 10 times, but there are producers who apply 20 times or more. Even with those apps it is still possible to lose everything on some occasions. And if there is soy nearby, it will be very difficult to control the whitefly population in your beans,” says Aragao.

“The prices of insecticides are very expensive and for small farmers it’s difficult to have to use it so many times. In Brazil we have a very large area -about 1.2 million acres- where it’s not recommended to plant beans due to the great loss probability”.Follow the latest news and policy debates on agricultural biotech and biomedicine? Subscribe to our newsletter.SIGN UP

Not just for COVID: RNA also protects crops

Since the 1960s, EMBRAPA researchers have searched for bean cultivars with natural resistance to BGMV throughout the Americas, but results were unsatisfactory. Once only cultivars with only partial resistance and not adapted to Brazilian conditions were identified, EMBRAPA decided to invest in modern biotechnology and GMOs.

“This started in the 90’s when we began to try, on the one hand, to transform beans, which is still one of the most difficult plants to be genetically transformed, and on the other, to study the virus and develop strategies to obtain resistant plants,” Aragao relates. Together with his colleague, Josias Faria, they tried some biotechnological strategies such as antisense RNA -expression of the complementary RNA strand of a gene- and lethal transdominance -expression of a mutated protein that is essential for virus replication-, unfortunately without results or only partial resistance.

“With RNA interference technology, we started in the early 2000s,” Aragao says about RNAi, a natural defense mechanism in plants that “silences genes” but that wasn’t yet fully understood then. Despite this, in the 90’s there had already been success with the Hawaiian papaya, where genetic modification through interfering RNA would save the island’s farmers from the papaya ringspot virus.

How does it work? You’ve probably read or seen a lot in the headlines of the last year about RNA vaccines for COVID-19. In this case, the modifying mechanism with interfering RNA isn’t very different, and it literally works as a “vaccine” for crops. Scientists inserted a DNA fragment of the virus into the nuclear genome of the plant, with the aim of making it produce small double-stranded RNA molecules -known as small interfering RNA or siRNA- that silence the viral rep gene, a key gene for the virus’s replication cycle. As a consequence, the virus is unable to express this gene, its viral replication is interrupted and plants become resistant to the virus. In simple terms, you get a plant “vaccinated” against BGMV.

So in the future, not only will we protect ourselves from pandemics with RNA vaccines, our food can also be protected from deadly viruses with this technology.

It should be noted that this “gene silencing” method is a plant natural mechanism. A normal bean plant that is infected will generate siRNAs later, but not in conditions or levels to deal with the pathogen. With genetic engineering, scientists anticipate and adapt this natural system so that it is triggered the moment the virus enters the plant and it defends itself effectively.

“Something we observe is that flies acquire the virus from plants, but the virus doesn’t replicate in the fly, but in plants… and so the flies acquire more and more viruses,” adds Aragao. “We also observe that when viruliferous flies are put on modified plants, the viral load decreases in the fly, since it releases the virus and has no place to absorb more.”

“It’s interesting and we observe that the same happens for neighboring -not modified- plants”, Aragao indicates, about a potential protector effect that modified beans would have on neighboring conventional crops. “We hope that farmers who produce conventional beans alongside GM bean farmers will also benefit.”

Comparison between an elite line of GM bean resistant to BGMV (right) with healthy leaves and pods, and its conventional counterpart (left) with marked roughness and chlorosis, as well as deformed pods caused by BGMV. Credit: Souza, 2018

From the laboratory to the field

In 2004 the Aragao and Farias team developed the first bean plant immune to BGMV with the siRNA strategy. From 24 modified lines in total, two were immune, and line “5.1” was finally selected–so named since it derives from experiment number 5. “Then we began to do the greenhouse trials, after field trials, the biosafety analyzes and we generated all the data needed to answer all the questions from the National Technical Commission for Biosafety (CTNBio)”, says Aragao.

Aragao and Faria’s team demonstrated that this new GM bean was safe for human consumption, nutritionally equivalent, and had no effects on the environment different than conventional beans. For example, off-target or epigenetic effects were ruled out, and it’s important to note that the inserted transgene doesn’t generate any new proteins, but only small RNAs, which are very unstable molecules and are degraded during food processing.

The collected information was presented to the CTNBio regulators in 2010, approving its commercial release in 2011, a historic milestone as it was developed entirely by a public entity and was the first GM bean in the world. However, why has it taken about a decade to hit the market since that approval?

“We still didn’t have commercial cultivars, and it hasn’t been possible to develop them before because -here in Brazil- all field trials require authorization and also, each field must be in a certified area,” says Aragao about the Brazilian regulatory system. “And for the data generation rules of a new variety, it must be considered that Brazil has five areas for the bean, and we must carry out trials in at least three zones, of each one of the areas, for two years.”

Due to the cumbersomeness of the certification system, EMBRAPA preferred to wait for the commercial release of line 5.1 and only then to breed it with local varieties and endow them with virus resistance. “After commercial approval, you can sow wherever you want and it’s very difficult to have approval for all areas and zones before commercial approval,” adds Aragao.Related article:  15 years after debuting GMO crops, Colombia’s switch has benefited farmers and environment

After more than 31 field trials analyzing agronomic performance, the first GM cultivars of a Pinto -or Carioca- variety suitable for commercial use had already been obtained in 2015. The average yield of the modified cultivar was almost 20% higher than conventional varieties, and in areas with a high incidence of the virus, the profitability of GM beans was 78% higher.

GM bean field in the city of Río Verde, Goias state, in January 2020. Credit: Francisco Aragao

A fascinating piece of information that should be highlighted is the absolute immunity the modified plants have demonstrated since event 5.1 was obtained. “The losses from BGMV are zero. Every year, since we started experimental planting and until the commercial one, we never observe a single plant with the virus, the plants are totally immune,” says Aragao. A strong contrast with the high level of losses in conventional beans that ranges from 40% to 100% of the plants, and the remaining grain is usually deformed or not suitable for sale.

“With this bean, the idea is to have a reduction in pesticide applications. Instead of doing 10 or even 25 applications, the idea is to only do 3 applications (for other pests). What we did was create something more sustainable and safer for consumers”.

Consumer perception and exports

The rules and regulations were not the only problem to be overcome. Since 2015 it had been time to evaluate the best strategy to bring the new GM Pinto bean, a variety that is planted on more than three million hectares and represents 70% of the beans consumed in the country, to Brazilian tables.

“We started to see how to launch it, because beans are not like soybeans, corn or cotton for us. First, it’s a plant that is there on our plate and is consumed every day. Second, it is much more than a staple food, it has a cultural value,” emphasizes Aragao. Since 2015 they had discussed how to conduct the commercial launch, which did not take place until  the second half of 2020, after the seeds multiplication for the first sale.

What has been the attitude of farmers and consumers? In the case of farmers, apparently a success. “The sale of seed has been 100%. The seed producers didn’t sell more because they didn’t have any more,” says Aragao with a laugh. Regarding consumers, it’s still too early to evaluate it, but considering that supermarkets have been selling many products with GMO labeling for years -because GM corn or soybeans derivatives- Aragao hopes that there will be no rejections with the new bean. “If you go to the street and do a survey asking people if they would eat GMOs, probably 40-60% will say no, but in the supermarket they buy it without any problem,” he emphasizes.

Pinto bean package with the new GM variety. It bears the GM label in a yellow triangle with a letter T inside, and below the text: “Product elaborated from GM beans”. Credit: ChileBio

The fact that the Pinto bean produced in Brazil is destined for exclusive local consumption -unlike other varieties- facilitated its commercial release. “We also have modified black beans [from event 5.1], but for now we decided not to launch to the market, since Brazil exports black beans. For example, we have feijoada that is exported canned, and we don’t want to have problems in other countries,” says Aragao.

Genetic editing and new developments

Aragao and his team continue to work on improvements for this Brazilian bean and are already integrating new gene editing technologies to give it greater drought tolerance, decrease phytates (anti-nutritional components), and bestow resistance to other important bean viruses, such as carlavirus.

He also mentions an interesting work carried out with a GMO approach in collaboration with the Instituto Tecnológico de Monterrey from México in 2016, managing to increase the level of folate (vitamins B9) 150 times, an essential nutrient in fetal development and whose deficiency in pregnant women generates babies with severe congenital problems.

Dr. Francisco Aragao with other GM crops developed under his leadership: A folate-biofortified lettuce (left) and a ricin-free castor bean (right). Credit: ISTOÉ/Embrapa

Other side projects that Aragao and his team are working on include GM lettuce and castor beans. “In lettuce we are working towards virus resistance and an increase in the folate level. We are running field trials and it’s practically ready, but we don’t have all the biosafety data yet. We want to achieve resistance to two very important viruses in lettuce -all over the world – and stack it together with the increase in folate in the same line.”

In castor bean, they seek to eliminate ricin, a highly toxic compound from seeds that makes its use in animal feed unfeasible. “Castor oil plant is a very interesting plant for semi-arid areas, it has a tremendous tolerance to drought and saline soils. The idea is to use a plant like this to obtain not only oil, but also a source of protein for animals,” says Aragao. “The cake that remains after oil extraction is used as fertilizer, but using it as protein for animals would be a much more noble and sustainable purpose.”

Local efforts and science denialism

Until now there has been no opposition from activists and NGOs against the commercial release of the new GM bean. “The anti-GMO groups here in Brazil are fighting against Argentine HB4 wheat, so at least they have forgotten about the bean,” says Aragao. The HB4 wheat he mentions is the first in the world to be approved for commercial release in the neighboring country, but it was conditional on import approval by Brazil, the largest buyer of Argentine wheat.

“Some of the anti-GMO (activists) now claim to be in favor of science for the COVID vaccine. Here we see an example of science denialism. They are deniers depending on the technology, and they don’t consider that some of the modern vaccines are GMOs. To claim that GMOs aren’t safe is simply science denialism. All the scientific data shows that they are safe,” remarks Aragao.

Another important point is that EMBRAPA’s GM bean dismantles the classic narrative against GMOs on the grounds of alleged monopolies or that it’s an exclusive technology of large companies and rich countries. “GM beans are important to show that this technology is not only for big farmers, since we have many small bean farmers in Brazil. Why only for soy, corn and cotton? Why only for large farmers?” asks Aragao.

“It is a technology that can be used for small farmers and to address local problems and crops. Large companies aren’t going to invest in sweet potatoes, cassava, beans or peanuts. They prefer to invest in crops of large areas that are grown in different countries. That is why developing countries have to make an investment in their own problems, and why not, with technologies like this one,” he concludes.

In Brazil, there is hope that this biotechnological solution, fruit of ingenuity and effort of the public sector of Brazil, will be an example to be followed by other Latin American, African and Asian countries. This GM bean approval is a preferrable alternative to walking the European path that has been hindering this technology for more than two decades. Following the Brazilian path shows how to develop local solutions to local problems.

Daniel Norero is a science communications consultant and fellow at the Cornell Alliance for Science. He studied biochemistry at the Catholic University of Chile. Follow him on Twitter @DanielNorero

The GLP featured this article to reflect the diversity of news, opinion and analysis. The viewpoint is the author’s own. The GLP’s goal is to stimulate constructive discourse on challenging science issues.

Read Full Post »

CRISPR sows seeds of change in agricultural biotechnology

Since its introduction in 2012, CRISPR-based genetic engineering technology has transformed biotechnology and opened new possibilities in biomedicine. Currently, CRISPR is driving development in yet another domain—agriculture. Although CRISPR has been slower to realize agricultural applications than biotechnology and biomedical applications, it is ready to help us cope with an array of agricultural challenges that include an expanding population, a rapidly warming climate, and a shrinking supply of arable land.

Nearly a decade after Charpentier and Doudna’s landmark study demonstrating that CRISPR systems could be programmed for targeted DNA cleavage in vitro (Jinek et al. Science 2012; 337(6096), 816–821), scientists have started to make good use of CRISPR systems in agricultural biotechnology (agbiotech). In fact, the first genome-edited agricultural product has already hit the market in Japan. This product is a tomato called the Sicilian Rouge High GABA. It was engineered by Sanatech Seed, and it is meant to help consumers reduce their blood pressure. If this product does well, it may encourage other agbiotech companies to ramp up their own CRISPR genome editing programs.

CRISPR has both practical and regulatory advantages over traditional plant breeding and genetic modification methods. Consequently, CRISPR is looking increasingly attractive to agbiotech companies that hope to engineer products that can improve human health and the environment.

“It’s all about genetic variability,” affirms Sam Eathington, PhD, the chief technology officer at Corteva Agriscience, one of the Big Four seed companies. “In some crops, we don’t have as much variability as we’d like. There are times that variability is locked up in parts of the genome that you just can’t unlock easily. Or you bring in a gene for improved disease resistance from a wild species that can intermate, but you bring along a whole bunch of stuff that’s detrimental.” CRISPR can overcome those obstacles, accessing that variability while removing unwanted baggage.

Read the complete article at www.genengnews.com.

Publication date: Thu 12 Aug 2021

Read Full Post »

Engineering broad-spectrum disease-resistant rice by editing multiple susceptibility genes

Journal of Integrative Plant Biology

Hui TaoXuetao ShiFeng HeDan WangNing XiaoHong FangRuyi WangFan ZhangMin WangAihong LiXionglun LiuGuo-Liang WangYuese NingFirst published: 25 June 2021 https://doi.org/10.1111/jipb.13145

Edited by:: Xuewei Chen, Sichuan Agricultural University, ChinaRead the full textPDFTOOLSSHARE

ABSTRACT

Rice blast and bacterial blight are important diseases of rice (Oryza sativa) caused by the fungus Magnaporthe oryzae and the bacterium Xanthomonas oryzae pv. oryzae (Xoo), respectively. Breeding rice varieties for broad-spectrum resistance is considered the most effective and sustainable approach to controlling both diseases. Although dominant resistance genes have been extensively used in rice breeding and production, generating disease-resistant varieties by altering susceptibility (S) genes that facilitate pathogen compatibility remains unexplored. Here, using CRISPR/Cas9 technology, we generated loss-of-function mutants of the S genes Pi21 and Bsr-d1 and showed that they had increased resistance to M. oryzae. We also generated a knockout mutant of the S gene Xa5 that showed increased resistance to Xoo. Remarkably, a triple mutant of all three S genes had significantly enhanced resistance to both M. oryzae and Xoo. Moreover, the triple mutant was comparable to the wild type in regard to key agronomic traits, including plant height, effective panicle number per plant, grain number per panicle, seed setting rate, and thousand-grain weight. These results demonstrate that the simultaneous editing of multiple S genes is a powerful strategy for generating new rice varieties with broad-spectrum resistance.

Supporting Information

Read Full Post »

Preview(opens in a new tab)Add titleGene editing poised to spark innovation in herbicide- and disease-resistant sugar cane

Gene editing poised to spark innovation in herbicide- and disease-resistant sugar cane

Julie Wurth | CABBI | July 22, 2021

Print Friendly, PDF & Email
Credit: Fawakih
Credit: Fawakih

This article or excerpt is included in the GLP’s daily curated selection of ideologically diverse news, opinion and analysis of biotechnology innovation.

Sugarcane is one of the most productive plants on Earth, providing 80 percent of the sugar and 30 percent of the bioethanol produced worldwide. Its size and efficient use of water and light give it tremendous potential for the production of renewable value-added bioproducts and biofuels.

But the highly complex sugarcane genome poses challenges for conventional breeding, requiring more than a decade of trials for the development of an improved cultivar.

Two recently published innovations by University of Florida researchers at the Department of Energy’s Center for Advanced Bioenergy and Bioproducts Innovation (CABBI) demonstrated the first successful precision breeding of sugarcane by using CRISPR/Cas9 genome editing — a far more targeted and efficient way to develop new varieties.

CRISPR/Cas9 allows scientists to introduce precision changes in almost any gene and, depending on the selected approach, to turn the gene off or replace it with a superior version. The latter is technically more challenging and has rarely been reported for crops so far.Follow the latest news and policy debates on agricultural biotech and biomedicine? Subscribe to our newsletter.SIGN UP

“Now we have very effective tools to modify sugarcane into a crop with higher productivity or improved sustainability,” [researcher Fredy] Altpeter said. “It’s important since sugarcane is the ideal crop to fuel the emerging bioeconomy.”

Print Friendly, PDF & Email

Read Full Post »

Kenya looks to gene editing to grow its key food crops

Joseph Maina | Cornell Alliance for Science | May 19, 2021

Print Friendly, PDF & Email
Agricultural researchers from the Kenya Agriculture and Livestock Research Organization (KALRO) have been working to produce drought-resistant crops to maximize crop outputs for smallholder farmers in Kenya’s rural areas. Credit: World Bank
Agricultural researchers from the Kenya Agriculture and Livestock Research Organization (KALRO) have been working to produce drought-resistant crops to maximize crop outputs for smallholder farmers in Kenya’s rural areas. Credit: World Bank

This article or excerpt is included in the GLP’s daily curated selection of ideologically diverse news, opinion and analysis of biotechnology innovation.Kenya’s agriculture is set to benefit from several gene-editing projects that target some of the country’s key food crops and livestock.

Farmers raising sorghum, maize, bananas, pigs and cattle can expect good news from ongoing research projects that aim to improve disease resistance and build more robust crop and animal varieties.

Gene editing, also known as genome editing, is a set of advanced plant and animal breeding techniques that can help to produce crops and livestock that can thrive in diverse ecological settings. Genome editing comprises a group of technologies that give scientists the ability to change an organism’s DNA. The technologies allow the addition, removal or alteration of genetic material at specific locations in the genome.

Kenya is a market leader among African countries in this area of biotechnology. The country has begun drafting guidelines to regulate gene-edited products, applying procedures that have been formulated in Argentina. A

A report produced by the International Service for the Acquisition of Agri-biotech Applications (ISAAA AfriCenter ) and titled “Genome Editing in Africa’s Agriculture 2021: An Early Take-off,” details some of the gene editing projects underway in Africa.

screenshot am

Kenya is among three countries in the eastern African region that have ongoing projects in genome editing in agriculture, with eight scientists working on various projects. Uganda and Ethiopia are the other two.

One of Kenya’s gene editing projects seeks to build resistance in the sorghum plant against the parasitic striga weed. The project is by Prof. Steven Runo, a professor of molecular biology at Kenyatta University. The project is evaluating knocking out the LGS1 gene to confer striga resistance in sorghum. Striga is a huge constraint to the production of sorghum and other cereal crops. Most cultivated cereals, including maize, millet, sorghum and rice, are parasitized by at least one striga species, leading to enormous economic losses.

Sorghum is an important crop in Kenya that is in high local demand not only for food and fodder, but also in the brewing industry, which requires over 30,000 metric tonnes of white sorghum.

Credit: Green Star

In another project, scientists are applying gene editing to control maize lethal necrosis (MLN), a disease that causes severe losses to maize in Kenya and neighboring countries.  The project, headed by Senior Research Scientist James Kamau Karanja, will introduce resistance against MLN directly into parent inbred lines of popular commercial maize varieties, which are currently susceptible to the disease, and reintroduce them into the farmers’ fields in Kenya with possible scaling out to other countries in East Africa.

Scientists Dr. Leena Tripathi, Jaindra Tripathi and Valentine Ntui are undertaking a CGIAR research program on roots, tubers and bananas. The project aims to develop disease-resistant varieties of banana.

Drought is among the major problems afflicting maize in Kenya. As part of her PhD project, Dr. Elizabeth Njuguna conducted research that sought to broaden stress tolerance in plants by maintaining energy homeostasis during stress conditions. She developed CRISPR-edited maize lines and carried out preliminary drought stress assays in greenhouse conditions at the VIB-UGent Center for Plant Systems Biology, Belgium, in collaboration with the Plant Transformation Laboratory at Kenyatta University, Kenya. The maize lines targeted for sub-Saharan Africa still require larger scale greenhouse analysis and field trial experiments.

In another gene editing project, Dr. Hussein Abkallo of ILRI is deploying CRISPR-Cas9 and synthetic biology technologies in developing vaccines against African Swine Fever Virus (ASFV) and East Coast fever (ECF).

These are two dangerous diseases affecting pigs and cattle, respectively.Follow the latest news and policy debates on agricultural biotech and biomedicine? Subscribe to our newsletter.SIGN UP

CRISPR, which stands for “Clustered Regularly Interspaced Short Palindromic Repeats”, is a method in biological research that has many applications in agriculture. It has become an important tool for improving crops to confer disease- and pest-resistance, abiotic stress tolerance and improved nutritional content.

Elsewhere in Africa, scientists are using gene editing approaches to develop high yielding and disease resistant crops and livestock. In Ethiopia, a group of scientists is seeking to improve oil qualities of Ethiopian mustard (Brassica carinata) through application of CRISPR/CAS 9-based genome editing. A project in Uganda is applying targeted gene editing towards development of high yielding, stress-resistant and nutritious crops, which include cassava, rice and maize.

Others include a gene-editing research project in Egypt to produce drought tolerant wheat, a Nigerian investigation into the role of ANP32 proteins in the replication of Avian influenza Virus, which affects poultry, and efforts to develop higher-yielding and more nutritious sweet potato in Ghana.

Dr. Joseph Maina is a Senior Lecturer in the Department of Earth and Environmental Sciences at Macquarie University. Joseph’s ultimate goals are to understand and predict the impacts of environmental variability and change on social and ecological systems at local and global scales to support spatial planning & management.

A version of this article was originally posted at the Cornell Alliance for Science and has been reposted here with permission. The Cornell Alliance for Science can be found on Twitter @ScienceAllyThe GLP Needs Your Help It is easier than ever for advocacy groups to spread disinformation on pressing science issues, such as the ongoing coronavirus pandemic. No, vaccines are not harmful. Yes, the use of biotechnology, GMOs or gene editing to develop antigens for treatments including vaccines are part of the solution. To inform the public about what’s really going on, we present the facts and challenge those who don’t. We can’t do this work without your help. Please support us – a donation of as little as $10 a month helps support our vital myth-busting efforts.

Read Full Post »

Thanks to gene editing, another biotech-driven farming revolution might be ‘just around the corner’

Nature | March 26, 2021

Print Friendly, PDF & Email
Credit: Research Square
Credit: Research Square

This article or excerpt is included in the GLP’s daily curated selection of ideologically diverse news, opinion and analysis of biotechnology innovation.

The basic principle of crop breeding is to first discover and then select for variants with desired traits. While selection is relatively easy, discovery is more challenging. Conventional breeding for domestication and crop improvement have unquestionably revolutionized agriculture and our society. 

But to further explore the potential of agriculture to feed an ever-growing population, larger crop diversity needs to be unlocked. The gene editing and RNA viral transfection technologies developed over recent years allow precise engineering of desirable variants with unprecedentedly high efficiency and resolution, greatly expanding the range of variations available and reducing our reliance on naturally existing mutations.

CRISPR–Cas breeding is more efficient than mutation breeding because mutagenesis is targeted to genes known to control desirable traits. Moreover, transgene-free plants can be easily obtained by transiently expressing CRISPR proteins or by segregating out constitutively expressed CRISPR. Gene-edited crops could thus avoid regulations against the cultivation of GMOs. 

Crop breeding need no longer rely on naturally occurring mutations, but instead artificially generated variations can be the raw material for further breeding. A much broader spectrum of phenotype space is ready for exploration, allowing development of optimal phenotypes adapted to heterogeneous environments on Earth, or even space. A new biotechnology-driven revolution in agriculture could be just around the corner.

Read the original postRelated article:  ‘Using Nature’s Shuttle’: Judith M. Heimann’s fascinating new book about how scientists learned to create genetically modified crops

Read Full Post »

NEWS AND VIEWS  05 MARCH 2021

Road map for domesticating multi-genome rice using gene editing

Having more than two sets of chromosomes can help plants to adapt and evolve, but generating new crops with this type of genome is challenging. A road map for doing just that has now been developed using wild rice.

Diane R. Wang

We all sometimes wish we could do more than one thing at once — run errands, catch up on work deadlines and perhaps grab that long-overdue coffee with a friend. A genetic state known as polyploidy helps some plant genomes to do just this. Most plants, like humans, are diploid, with two sets of every chromosome. But polyploid plants have four, six or even eight sets of chromosomes. These additions allow different copies of a gene to take on different roles, and provide a buffer against potentially harmful mutations. Accordingly, polyploidy has served as a common mode of evolution in flowering plants1Writing in Cell, Yu et al.2 outline a viable approach to producing a domesticated form of polyploid rice using gene editing. Their advance could allow us to reap the benefits of polyploidy in one of the world’s most important crop species.Read the paper: A route to de novo domestication of wild allotetraploid rice

All crop species evolved from wild ancestors, as humans saved and propagated plants that had favourable attributes — loss of seed-dispersal mechanisms, for instance, and larger seeds and fruits3 — over hundreds or thousands of years. The world’s main rice crop, the Asian species Oryza sativa, was domesticated about 9,000 years ago from its wild progenitor, Oryza rufipogon, through processes thought to have occurred across multiple regions in Asia4,5. Both species are diploid, carrying two sets of 12 chromosomes.

For rice scientists, the idea of developing polyploid cultivated rice is tantalizing as a potential means for future crop improvement, especially in the face of climate variability6. The plant’s extra gene copies might enable rapid adaptation in response to major changes in the environment without the loss of favourable features7. But generating a polyploid rice from a cultivated diploid plant is hugely technically challenging. With that in mind, Yu et al. took an entirely different approach. The authors started with a distant, wild polyploid cousin of O. sativa and O. rufipogon, and domesticated it using biotechnological approaches (Fig. 1).

Figure 1
Figure 1 | A fast track to cultivated polyploid rice. Yu et al.2 have developed a strategy for rapid domestication of wild polyploid rice (which has more than two sets of chromosomes, unlike the rice commonly grown as a food crop). The first step is to select a wild strain that has favourable characteristics for gene editing and crop production. This is followed by genomic analysis and method optimization. Iterative cycles of genome editing, conventional crossing and testing are then needed before the new crop is rolled out to farmers and evaluated. Red highlights indicate sections of the road map completed by the authors for the wild rice Oryza alta.

The authors first spent time identifying an appropriate starting strain. The ideal candidate needed to be amenable to callus induction and regeneration — a process in which plant tissues are cultured to produce a mass of partially undifferentiated cells called a callus, from which new plants are generated. These properties are essential for gene-editing techniques. The selected individual also needed to have high biomass and tolerance to various abiotic and biotic stresses — heat and insect resistance, for example. After screening 28 polyploid wild rice lines, a strain of Oryza alta was selected, and named polyploid rice 1 (PPR1).

Oryza alta has four sets of chromosomes (it is tetraploid), and is found in Central and South America8. The species arose as a result of hybridization between two ancestors that had diploid genomes, designated C and D. The PPR1 strain selected by Yu et al. looks quite different from cultivated O. sativa. For instance, it is very tall — more than 2.7 metres, compared with 1 metre or less for typical O. sativa. It produces abundant biomass, and has broad leaves and sparse, small seeds adorned with awns (spiky protrusions thought to aid seed dissemination). As such, domesticating this wild relative was no small feat.

Yu and colleagues established methods for gene editing in PPR1, and assembled a high-quality genome for the strain. This acted as a map that helped identify genes to target for domestication. The authors compared PPR1 with an O. sativa genome dubbed Nipponbare. They discovered about 10,000 genes in each of the C and D genomes that did not have equivalents (homologues) in Nipponbare. By contrast, about 39,500 genes in Nipponbare (70.41% of the genome) did have homologues in PPR1.Multiple genomes give switchgrass an advantage

The latter was a promising result, because it meant that the genes responsible for domestication in O. sativa probably had related versions in PPR1. The researchers edited a suite of such genes in PPR1 that were known to have been involved in the domestication of O. sativa. This led to a range of improvements in PPR1: loss of shattering (a seed-dispersal mechanism), so that seeds did not fall off the plant before harvest; reduced awn length to ease post-harvest processing; increased grain length for larger kernels and greater yield; decreased height and thickened stem diameter to support the heavier grains; and modified (both longer and shorter) flowering times, needed for local adaptation to different latitudes.

Together, Yu and colleagues’ efforts led to the production of PPR1 lines with domesticated features in a just few generations, fast-tracking a process that typically occurs over hundreds to thousands of years. The work opens the door to developing plants that not only can better withstand environmental stresses (a crucial characteristic for global food security in the face of changing climates), but also could carry other characteristics — enhanced nutrition and taste, for example — that might help rice to meet evolving consumer preferences in the future. In addition, the strategy the authors have devised could theoretically provide a road map for applying biotechnology to drive the domestication of wild relatives of other present-day crops.Keen insights from quinoa

The techniques established by Yu et al. await testing in other wild, tetraploid rice strains. Successful extension to a broader gene pool will be necessary if researchers and breeders are to generate a diverse repository of domesticated polyploids, which could then be used to generate further improved strains through conventional crosses or genome editing — strains adapted to particular production systems, for instance, or those with high market acceptability. And although wild polyploids hold great promise as yet-untapped sources of genes that confer tolerance to abiotic stresses such as drought, these traits are likely to be complex, as noted by the authors, being influenced by many genes, each of which has only a small effect. A deeper understanding of the genetics of these plants is needed for the full potential of wild rices to be appreciated.

There is a long journey ahead for the breeding of cultivated polyploid rice. But the first seeds have now been sown. As demand for nimble and resilient food systems rises, rapid domestication and improvement of wild plant species, including polyploids, may well become a valuable instrument in agriculture’s toolbox.doi: https://doi.org/10.1038/d41586-021-00589-9

Read Full Post »

science daily

Gene-editing protocol for whitefly pest opens door to control

Date:
April 23, 2020
Source:
Penn State
Summary:
Whiteflies are among the most important agricultural pests in the world, yet they have been difficult to genetically manipulate and control, in part, because of their small size. An international team of researchers has overcome this roadblock by developing a CRISPR/Cas9 gene-editing protocol that could lead to novel control methods for this devastating pest.
Share:
FULL STORY

Whiteflies are among the most important agricultural pests in the world, yet they have been difficult to genetically manipulate and control, in part, because of their small size. An international team of researchers has overcome this roadblock by developing a CRISPR/Cas9 gene-editing protocol that could lead to novel control methods for this devastating pest.

According to Jason Rasgon, professor of entomology and disease epidemiology, Penn State, whiteflies (Bemisia tabaci) feed on many types of crop plants, damaging them directly through feeding and indirectly by promoting the growth of fungi and by spreading viral diseases.

“We found a way to genetically modify these insects, and our technique paves the way not only for basic biological studies of this insect, but also for the development of potential genetic control strategies,” he said.

The team’s results appeared on April 21 in The CRISPR Journal.

The CRISPR/Cas9 system comprises a Cas9 enzyme, which acts as a pair of ‘molecular scissors’ that cuts DNA at a specific location on the genome so bits of DNA can be added or removed, and a guide RNA, that directs the Cas9 to the right part of the genome.

“Gene editing by CRISPR/Cas9 is usually performed by injecting the gene-editing complex into insect embryos, but the exceedingly small size of whitefly embryos and the high mortality of injected eggs makes this technically challenging,” said Rasgon. “ReMOT Control (Receptor-Mediated Ovary Transduction of Cargo), a specific type of CRISPR/Cas9 technique developed in my lab, circumvents the need to inject embryos. Instead, you inject the gene-editing complex which is fused to a small ovary-targeting molecule called BtKV, into adult females and the BtKV guides the complex into the ovaries.”

To explore the use of ReMOT Control in whiteflies, the team targeted the “white” gene, which is involved in eye color. When this gene is functioning normally, whiteflies have brown eyes, but when it is non-functional due to mutations, the insects is supposed to have white eyes. The team found that ReMOT Control generated mutations that resulted in juvenile insects with white eyes that turned red as they developed into adults.

“Tangentially, we learned a bit about eye color development,” said Rasgon. “We expected the eyes to remain white and were surprised when they turned red. Importantly, however, we found that the mutations we generated using ReMOT Control were passed on to offspring, which means that a change can be made that is inherited to future generations.”

Rasgon said the team hopes its proof-of-principle study will allow scientists to investigate the same strategy using genes that affect the ability for the insects to transmit viral pathogens of crop plants to help control the insects and protect crops.

“This technique can be used for any application where you want to delete any gene in whiteflies, for basic biology studies or for the development of potential genetic control strategies,” he said.


Story Source:

Materials provided by Penn State. Note: Content may be edited for style and length.


Journal Reference:

  1. Chan C. Heu, Francine M. McCullough, Junbo Luan, Jason L. Rasgon. CRISPR-Cas9-Based Genome Editing in the Silverleaf Whitefly (Bemisia tabaci). The CRISPR Journal, 2020; 3 (2): 89 DOI: 10.1089/crispr.2019.0067

Cite This Page:

Penn State. “Gene-editing protocol for whitefly pest opens door to control.” ScienceDaily. ScienceDaily, 23 April 2020. <www.sciencedaily.com/releases/2020/04/200423130410.htm>.

Read Full Post »