Feeds:
Posts
Comments

Archive for the ‘Food Security’ Category

Fall Armyworm Control in Action March 2022 – Issue #8
Newsletter

Highlights
The Kingdom of Saudi Arabia reported fall armyworm (FAW) infestations in fields in Najran Governorate, with in Al-Kora Governorate of Al-Baha Province illustrating continuous spread of FAW in NENA region. The Ministry of Environment, Water, and Agriculture announced the insect pest was detected on maize plants. In response, authorities have implemented phytosanitary measures, destroyed infested maize crops, installed traps around infested sites, and is managing FAW populations in neighbouring crops.
In Zambia, FAW has reportedly reached concerning population levels in ten provinces and in 96 out of 116 districts, illustrating the need for continuous capacity development in FAW management. FAO,
under the aegis of the Global Action for Fall Armyworm Control (GA), will support the government of the Republic of Zambia in improving capacities for FAW management among farmers and extension workers. FAW has reportedly affected 129 517 households and 96 222 hectares of maize fields.
Based on lessons learned during the work conducted by the International Plant Protection Convention (IPPC) technical working group on FAW quarantine and phytosanitary measures, a new work programme on banana Fusarium wilt (TR4) is under way. The IPPC Secretariat is holding a virtual workshop series on Fusarium TR4
diagnostic, surveillance, inspection and simulation exercises. The first of three sessions is scheduled for 24 March 2022, followed by sessions on 19 April 2022 and 10 May 2022. The three sessions
will be held in English, and two of the sessions will have simultaneous interpretation in French and Spanish through an in-kind contribution from the Comité de liaison Europe ACP (COLEACP).
The Cameroon workshop discussed the use of biological control, botanicals, and farmer trainings. It was opened by the Secretary General of the Ministry of Agriculture and Rural Development, Mbong Epse Bambot Grace Annih.
©FAO

Implementation
FAW was named as top national priority for key pest control in the People’s Republic of China for 2022 in February as the National Agricultural Technology Extension and Service Center (NATESC) renewed the annual strategy for FAW control. This followed a national expert working group meeting organized by NATESC to analyse FAW data and control measures that had been implemented in 2021. The working group also presented conclusions to facilitate the delivery of early warning messages with regard to FAW at the national level.
Resource mobilization training was conducted on 28 February 2022 for 30 people including national focal points and FAO focal points in country offices. A general overview of the resource mobilization situation with regard to the Global Action was provided during the session. The training was based on the new GA resource
mobilization guide and was also interpreted in the French language.
In the Republic of Cameroon, a three-day training workshop began on 28 February 2022 to enhance capacity of national focal points from central Africa countries in FAW monitoring, early warning and sustainable management of the pest. The workshop also aimed to strengthen coordination between GA demonstration
and pilot countries through theory as well as farm-level practical sessions. The 25 participants, including including leaders of farmer organizations, extension officers, researchers and FAO facilitators,
were asked to validate the strategy document at the central Africa geo-zone level. The workshop included participants from the Republic of Cameroon, Central African Republic, Republic of Equatorial Guinea, Equatorial Guinea, the Gabonese Republic, Republic of the Congo, Democratic Republic of the Congo, and the Democratic Republic of Sao Tome and Principe.
The Republic of the Philippines Bureau of Plant Industry hosted seven geo-zone webinar training events in January and February 2022 covering multiple topics, including monitoring and early warning, host plant resistance, biological control, biopesticide and pesticide application.

Contact information:
Plant Production and Protection – Natural Resources and Sustainable Production
Email: Fall-Armyworm@fao.org
http://www.fao.org/fall-armyworm/global-action/en/
https://www.ippc.int/en/the-global-action-for-fall-armyworm-control/
Food and Agriculture Organization of the United Nations
Rome, Italy
Some rights reserved.
This work is available under a
CC BY-NC-SA 3.0 IGO licence
Communications and Partnerships
A GA resource mobilization guide has been finalized and will be
available for public download. These guidelines provide a framework for mobilizing essential resources to support the work of the
GA and the FAW Secretariat.1
New Technical Cooperation Programmes have been initiated,
including a USD 500 000 emergency response to strengthen the
management and preparedness capacities of five North African
countries – the People’s Democratic Republic of Algeria, the State of
Libya, the Islamic Republic of Mauritania, the Kingdom of Morocco,
and the Republic of Tunisia – to mitigate the impact and risk of FAW.
New Developments
By comparing genetic characteristics of FAW populations collected
from 22 sub-Saharan countries between 2016 and 2019, Nagoshi
et al. (2022) inferred that the strain preferring maize as the host
plant predominated the FAW populations in Africa. Additionally,
a broad grouping of genetic characteristics of FAW collected in
East and West Africa seem to indicate limited natural migrations
of FAW at a continental scale. The authors suggested that smallerscale movement through trade probably contributed to the initial
spread of the pest across Africa. Nagoshi, R.N., Goergen, G., Koffi, D.
et al. Genetic studies of FAW indicate a new introduction into
Africa and identify limits to its migratory behavior. 2022. Sci Rep
12, 1941.2
A study led by icipe and NIBIO showed that FAW density levels
could be predicted using host availability as well as climatic data.
The study utilized FAMEWS data, among others, to validate the
predictions. The authors suggested that further detailed data on
the natural enemies of FAW, their occurrence and efficiency in
regulating FAW populations, will further strengthen the predictive
mode. Harnessing data science to improve integrated management
of invasive pest species across Africa: An application to Fall
armyworm (Spodoptera frugiperda) (J.E. Smith) (Lepidoptera:
Noctuidae) – ScienceDirect.
3
CB9220EN/1/03.22
©FAO, 2022
1 https://www.fao.org/3/cb8910en/cb8910en.pdf
2 https://www.nature.com/articles/s41598-022-05781-z
3 https://www.sciencedirect.com/science/article/pii/S2351989422000580?via%3Dihub
Field stories
In Burkina Faso, field work by two university partners of the
GA – Université Nazi Boni (UNB) and Université Joseph Ki Zerbo
(UJKZ) – has included trials to evaluate a number of potential
FAW control measures including: production of Telenomus remus
parasitoid; selection of maize varieties for FAW tolerance; the
efficacy of several types of FAW traps; efficacy of local strains of
entomopathogens; biological control potential of local arthropod
natural enemies; and effectiveness of combining other crops with
maize (herbs, pigeon peas and other species) on FAW.
In the Republic of Cameroon, a field visit was organized following
the training workshop that began on 28 February 2022. The field
visit included the area around Ntui in central Cameroon, and around
Foumbot in the western region, with the goal of identifying sites
for large-scale demonstrations of integrated pest management
(IPM) technology. Foumbot holds particular significance because
it is also the first site where FAW was reported in Cameroon.
©FAO
During the field visit, members of a young farmers cooperative, local leaders and
extension agents were consulted to discuss collaborations for successful
implementation of the GA in the Republic of Cameroon as the demonstratio

Read Full Post »

Research Finds Protecting Pollinators is Critical For Food Security in Africa

twitter sharing button
facebook sharing button
email sharing button

Agrilinks Team

Nov 06, 2020

butterfly
Photo Credit: Aleksandra Georgieva

This post is written by Sunday Ekesi, Michael Lattorff, Thomas Dubois, International Centre of Insect Physiology and Ecology (ICIPE).

Background

Pollination is crucial for food production, human livelihoods, and the preservation of biodiversity in natural ecosystems. Global crop production is highly dependent on pollinators. Approximately 75% of all crop plants are dependent on animal-mediated pollination and a recent analysis estimated the annual market value of pollinator services at US$235-577 billion. Thus, pollinators and the pollination services they provide serve a crucial function in food security. In many developing countries, agricultural production has become increasingly dependent on pollination services, as the relative number of pollination-dependent crops has increased three times compared to developed countries over the past 50 years. Pollination of crop plants by insects also contributes directly to human nutrition by increasing the availability of critical micronutrients. Animal-pollinated crops contain the majority of the available dietary lipid, vitamin A, C, and E, which are critical for the physical and intellectual development of children, as well as of key importance to other vulnerable groups including pregnant women, populations in disease risk regions (e.g. malaria endemic regions), and immuno-compromised individuals (due to malnutrition or pre-existing conditions). Beyond supporting crop production and human health through a diversified diet, pollinators are also a source of several commercial products (e.g., honey, wax, bee venom, royal jelly and resins) important for cosmetics, medicine, and cultural identity. Yet, despite their importance, pollinators are under increasing pressure and populations are declining worldwide.

Pollination R4D to improve food security: Examples from the International Centre of Insect Physiology & Ecology (ICIPE)

Assessing pollinator diversity

Globally, declines in insect pollinator populations (due to diverse factors including unsustainable agricultural practices, habitat destruction, and climate change) are threatening crop production amidst the growing demand for food driven by human population growth. To conserve and augment the population of pollinators for horticultural crops, we first need a basic understanding of their diversity. In this regard, we have undertaken surveys on avocado along the altitudinal gradient of the Eastern Afromontane region of Taita Hills, Kenya. Diverse pollinators belonging to 28 species in 14 families were observed visiting avocado. Overall, the proportion of honeybee (Apis mellifera) visits were the highest. In Murang’a, Kenya, a richer assembly of flower visitors was observed — including 73 species in 29 families. The most abundant families were ApidaeCalliphoridaeRhiniidae, and Syrphidae. Honeybees comprised 95.8% of Apidae. Other bee species included Braunsapis sp.Ceratina (Simioceratina) sp. (both Apidae), and Nomia sp., Lasioglossum sp., Pseudapis sp. (both Halictidae). On macadamia, stingless bee species from the genus Hypotrigona and Liotrigona have also been identified as efficient pollinators to enhance pollination and increase the productivity of the crop.

Understanding pollinator deficits and exploring opportunities to utilize pollinators to increase crop yields

Intensification of agriculture is leading to losses of wild pollinator species and hence of pollination services required to increase crop yields. As a result of the threats facing honeybees and other pollinators, ICIPE has been developing tools to utilize alternative managed pollinators (e.g., honeybees, stingless bees, and carpenter bees). In one of the major avocado growing areas of Kenya (Murang’a county), we analyzed the pollination deficit in avocado. This is the decrease in crop yield due to lack of sufficient pollination services. We found a 27% loss of fruits due to suboptimal pollination. However, supplementation of smallholder avocado farms with two honeybee colonies was sufficient to reverse this pollination deficit, increasing avocado yield by 180% and income by US$168 per farmer per season.

The domestication of stingless bees as alternative pollinators is a major component of activity at ICIPE. Through this activity, it has been possible to domesticate 14 species from East, West, and Central Africa; among which 6 have been widely evaluated and promoted with respect to their pollination efficiency. We are currently implementing activities for the use of stingless bee-targeted pollination on specific crops in open fields. In Kakamega, Kenya, research activities implemented jointly with smallholder farmers on pollination showed that stingless bee species, such as Hypotrigona gribodoi, are more efficient in improving green pepper fruit and seed quality in open fields compared to other wild pollinators. We also determined that the stingless bee species Meliponula bocandei and M. ferruginea are more efficient than honeybees in the pollination of sweet melon and cucumber. Recently, we also demonstrated that flower odor learning in stingless bees is species-specific, and that specific vibrational sounds are used to recruit foragers to crop plants. In an ongoing Mastercard Foundation-funded projects (Young Entrepreneurs in Silk and Honey [YESH] and More Young Entrepreneurs in Silk and Honey [MoYESH]) aimed at expanding commercial beekeeping, entrepreneurial and decent employment opportunities for >100,000 youth in Ethiopia, pollination of horticultural crops, especially vegetables using honeybees and stingless bees, along developed watersheds and rehabilitating landscapes, is being promoted as a complementary income generating opportunity while also providing diverse bee forages. Already, a cohort of 16,926 partner youth (59% female) have been recruited at project action sites and organized into 1,263 business enterprises designed to enhance agribusiness and income generation opportunities for rural youth and women in the country. Model beekeeping sites will be used to demonstrate managed beekeeping as an integral component of sustainable ecological farming that promotes healthy food, healthy farming, and a healthy environment.

Bee health R4D in support of pollination services

ICIPE has established the African Reference Laboratory for Bee Health (ARLBH) at its headquarters in Nairobi, Kenya, with four satellite stations in Liberia, Burkina Faso, Cameroon, and Ethiopia, as well as a diagnostic laboratory in Madagascar. This is the first of its kind in Africa. The ARLBH was accredited as a Collaborating Centre for Bee Health in Africa by the World Organization for Animal Health (OIE). Activities in the facility include assessment of environmental stressors like pesticides and habitat deterioration responsible for bee declines, development and establishment of diagnostic tools for pesticide residue analysis, surveillance for bee diseases, and establishing measures to protect them.

Improving habitat protection and restoration

Large-scale land transformation puts insect pollinators at risk, as land use change often results in degraded or fragmented habitats, that can no longer support pollinators due to the lack of nesting or foraging habitats. We have demonstrated that habitat deterioration, which includes natural forest loss, reforestation and afforestation with exotic tree species, negatively impacts species richness and diversity of stingless bees in sub-Saharan Africa. In fact, most stingless bee species are susceptible to habitat degradation since they tend to have very specific nesting requirements and only few species accept a broad range of natural and artificial substrates.

Strengthening pest and disease surveillance and management

Selected pollinator pests have been identified as being a particular concern to pollinator populations, including the wax moth (Galleria mellonella) and large and small hive beetles (Oplostomus haroldi and Aethina tumida) respectively. An initial survey provided high quality data that have been used, in combination with modeling approaches, to predict regions of high pest risk. The chemical and behavioral ecology of these pests has also been studied in detail, with the aim of developing control measures based on using chemical agents as attractants or repellents in traps. In Kenya, small hive beetles have also been identified as a major pest affecting stingless bee Meliponula species. Additionally, we have established that the Black Queen Cell virus that attacks honeybees can also be transmitted to stingless bees. Finally, we have also determined the resistance and tolerance mechanisms of African honeybees to the ectoparasitic mite Varroa destructor, potentially the most severe bee-pest. A plant-based bio-pesticide has been developed that is effective against the Varroa mite and has a repellent effect on the small hive beetle.

Decreasing the risk of pesticide use in crops and foraging plants, and adopting pollinator-friendly agricultural practices

While pesticide residue levels currently remain below international standard norms (e.g. EU standards), ICIPE and partners have observed an increase in pesticide residues in beehive products, which implies that pollinators are picking up pesticides applied to crops that could in turn affect their health. Pesticide use is increasing in sub-Saharan Africa, and ICIPE has piloted the use of ‘integrated pest and pollinator management (IPPM)’ to ensure that crop protection is harmonized with pollination services on pollinator-dependent crops such as avocado and cucurbits. In Kilimanjaro, Tanzania, and Murang’a, Kenya, we are implementing best-bet integrated pest management (IPM) package based on  fungal bio-pesticides, attract-and-kill products, and protein baits that enhance pollinator diversity while reducing pest populations (such as the oriental fruit fly — Bactrocera dorsalis — and the false codling moth — Thaumatotibia leucotreta) on avocado across landscapes. So far, more than 1,400 farmers in Murang’a have been trained on the use of IPPM, and many have adopted the practice to combat avocado pests without negatively impacting pollinators.

Understanding the bee microbiome to improve pollination services

Honeybees and stingless bees harbor diverse gut microbiota, which are critical to a variety of physiological processes — including digestion, detoxification, immune responses, and protection against pests and diseases. Surprisingly, whereas beekeeping has been widely promoted as a tool to mitigate poverty in tropical and subtropical regions of the world, no comprehensive studies of honeybee gut microbiota have been done in sub Saharan Africa where pollen and nectar resources are present year-round. Moreover, Africa hosts a highly significant diversity of bee species that might be associated with significant and uncharacterized gut microbe diversity selected for by different evolutionary pressures. ICIPE’s goal is to increase pollinator fitness and thus the pollination services they provide by investigating gut microbiota-host interactions. With the use of comparative genomics and microbiology tools, we are characterizing the nature of specific beneficial interactions. Results indicate that microbial abundance varies with geographical locations. We are currently investigating the parameters affecting this abundance as well as uncovering novel members of the microbiome that we found to be specific to Africa, in an effort to enhance pollinator health and pollination services.

Modeling climate change impact on pollinators

Climate shocks and land use change increasingly affect the life cycle as well as spatial and temporal distribution patterns of pollinators (e.g., honeybee, stingless bees), their pests, and the flowering plants upon which they depend for food and shelter. These habitat changes and climatic shifts have a trickle-down effect on pollination efficiency and thus food security. We are using replicable analytical methods and novel procedures for assessing the impact of climate and landscape change on the current and future distribution and abundance of honeybees, stingless bees, their pests, and flowering plants. Using long-term climate data with time-series satellite data variables overlaid on actual land surface properties and dynamics (i.e. changes in vegetation chlorophyll activity over time), we have developed accurate and realistic pest risk maps to guide interventions with regard to managing the pests of these pollinators using bio-pesticides without harming bees. Within the landscape mapping context, we have developed a sophisticated algorithm to map floral responses from spectral imagery. This is helping to understand the role of landscape fragmentation and the distribution, abundance, and temporal availability of flowering plants, pollinators, and pollination services. The knowledge on the value of natural habitats for bees within agro-ecological landscapes (using flowering and fragmentation maps) should be an incentive for the protection of these habitats.

Strengthening the capacity of farmers and national systems

Capacity building of farmers and national agricultural extension systems has been integral to building awareness of the important role pollinators play in improving food security. Training activities range from minimizing pesticide use, adopting pollinator-friendly agricultural practices, incentive to communities to support conservation of pollinators, and training of graduate students (PhD and MSc). Over 17,793 farmers and 816 extensionists have been trained across 21 Francophone and 23 Anglophone speaking countries across Africa. A total of 32 graduate students (PhD and MSc) have been trained across different countries (Kenya, Burkina Faso, Belgium, Uganda, Cameroon, Ethiopia, D.R. Congo, South Sudan, Nigeria, Ghana, Tanzania, Madagascar).FILED UNDER:AGRICULTURAL PRODUCTIVITYMONITORING, EVALUATION, AND LEARNINGRESILIENCE

Read Full Post »

New Sorghum Variety Will Help Farmers Increase Sorghum Yields

twitter sharing button
facebook sharing button
email sharing button

Benjamin Kohl, Ph.D.

Feb 02, 2022

Purdue University professor, Dr. Tesfaye Mengiste, looks at sorghum infected with anthracnose. Mengiste led a team of researchers who identified a single gene that confers broad resistance to the fungal disease.
Purdue University professor, Dr. Tesfaye Mengiste, looks at sorghum infected with anthracnose. Mengiste led a team of researchers who identified a single gene that confers broad resistance to the fungal disease. Photo Credit: Purdue University

Feed the Future Innovation Lab for Collaborative Research on Sorghum and Millet (SMIL) supports research that provides natural resistance to pathogens and pests in Ethiopian farm fields

Scientists with SMIL have developed a sorghum variety that provides natural resistance to pathogens and pests that have crippled the crop in humid, lowland areas of western Ethiopia.

Their research is reported in the January 9 issue of The Plant Cell, a journal of the American Society of Plant Biologists.

Dr. Timothy Dalton, director of SMIL — based at Kansas State University — said the researchers’ work will “serve the broader sorghum development community and is a flagship global good, public characteristic of the U.S. land grant mission.”

The SMIL, led by Dalton, funded work in Ethiopia and West Africa to map genes and explore more than 2,000 pieces of germplasm in numerous field trials spanning several years.

“The new sorghum variety, called Merera, has multiple benefits, including resistance to pathogens and birds, and it yields better than current varieties that Ethiopian farmers have,” said Dr. Tesfaye Mengiste, a professor of botany and plant pathology at Purdue University, and the principal investigator for the research.

Mengiste said Merera has shown resistance to Anthracnose, a devastating fungal disease that attacks all parts of the plant — leaves, stalk and head — leaving almost nothing to be used for food (sorghum’s primary use in Africa), biofuels or animal feed (the primary use of sorghum in the United States).

“With these improved traits and yield potential, it can mean a better livelihood for (farmers),” Mengiste said.

A newly discovered gene, named Anthracnose Resistance Gene1, or ARG1, is unique, according to Mengiste.

“Although some natural resistance to fungal disease was known in sorghum, genes that confer widespread resistance have not been identified,” he said. “It is remarkable that a single gene leads to resistance across a broad spectrum of fungi and multiple strains of the Anthracnose fungus.”

Mengiste cited recent results with Merera that indicate up to a 43% increase in sorghum yields, which has led to increased income for smallholder farmers.

In 2013, USAID invested $13.7 million to establish the SMIL at Kansas State University. The lab’s primary focus is to improve the productivity, disease resistance, agronomy and economics of sorghum and millet in six partner countries.

In 2018, USAID renewed its commitment to SMIL, awarding $14 million over five years to continue the project’s work.

USAID funds several Feed the Future Innovation Labs across the country to harness the capacity of U.S. land grant institutions, other universities and the private sector to improve food security globally.

The sorghum variety recently developed for Ethiopia — while directly benefitting farmers in that country — is much like many other Feed the Future projects that aim to build knowledge to help farmers throughout the world, including the United States.

“Through this collaborative research supported by SMIL and the funding through USAID, we will continue to explore the rich Ethiopian germplasm to come up with the next resilient and high-yielding varieties,” Mengiste said. “With better leveraging of recent genetic technologies, we will expedite the development of the new generation of varieties or those in the pipeline.”

More information about SMIL, please visit https://smil.k-state.edu.

Read Full Post »

What’s the Place of Technology in the Fall Armyworm Crisis?

twitter sharing button
facebook sharing button
email sharing button
placeholder

Alice Gribbin

Apr 17, 2018

Armyworm on a leaf. Photo credit: G. Goergen, IITA
What’s the Place of Technology in the Fall Armyworm Crisis? Photo credit: G. Goergen, IITA

This post was written by Ellen Galdava of FHI 360 and Kwasi Donkor of USAID.

Everyone from amateur gardeners to agricultural experts know that pest management is one of the most important aspects of good agricultural practice. This remains true for smallholder farmers. For smallholder farmers who often borrow money for seed and equipment before a harvest, a pest outbreak can not only destroy a harvest, it can also mean serious financial setback. Better equipping smallholder farmers to manage pest outbreaks will lead to stronger crop yields and increased food security. However, this is easier said than done. 

What is the Fall Armyworm and How Bad Is It?

In 2016, the fall armyworm, a pest native to the Americas that can demolish a large number of crops, arrived as an invasive species in Africa. A smallholder farmer in Africa is already saddled with everyday challenges that range from weather to accessing financial services. The fall armyworm outbreak further endangered food stability and increased the hurdles of everyday life.

Compared to other pests, the fall armyworm is especially damaging because it eats both the vegetative and reproductive parts of plants. The destructive nature of the fall armyworm makes it critical and expensive to exterminate. Brazil, for example, spends up to $600 million annually fighting it. And while scientists and farmers in the Americas are knowledgeable about and prepared for fall armyworm, its appearance in Nigeria in January 2016 took African farmers by surprise. While they had seen a local armyworm before, they had never encountered this invasive species. Nearly two years after initially being spotted in Nigeria, with the help of its quick reproductive cycle and unique migratory capacity, in December 2017, the fall armyworm had spread to 38 other African countries.

The existing fall armyworm crisis in Africa endangers crop yields, food security and most of all threatens to deepen the poverty gap. Data from the Center for Agriculture and Bioscience International (CABI) shows that 13.5 million tons of maize valued at $3 billion are at risk of fall armyworm in Sub-Saharan Africa. This is equivalent to 20 percent of the total production in the region. These numbers show that a potential food crisis in Africa may be imminent if the right pest management solutions are not found soon.

Technological Solutions

In trying to resolve development challenges rapidly and efficiently, development practitioners increasingly turn to technology to produce quick, efficient and scalable solutions. For that reason, mSTAR and Digital Development for Feed the Future (D2FTF) decided to explore the possibility of developing a mobile application for pest management. The goal was to enable smallholder farmers to diagnose and find treatment for pests. The mobile application would enable farmers to quickly identify the pest and decide on the treatment plan. Before investing in the application, the team conducted a landscape assessment of existing technologies and interviewed farmers and extension workers in Ghana to identify the feasibility of such a high-tech intervention.

Diagnostic vs. Management Support Technology

While analyzing existing pest management technologies, it became apparent that agriculture development organizations generally use two types: diagnostic and management support technology. An example of a diagnostic technology is Plantix, a machine learning application, which assists farmers and extension workers to identify pests. An example of management support technology is using WhatsApp messaging groups as a management tool to enable trained extension workers, plant doctors and farmers to diagnose plant infections and determine the best pesticide for the specific pest.

Most organizations working on pest management have been focused on using management support technology solutions rather than diagnostic technologies. For example, USAID/Ghana’s Agriculture Development and Value Chain Enhancement (ADVANCE) project, which improves the competitiveness of agricultural value chains, implemented pheromone traps and GIS mapping to model the movement of fall armyworm. ADVANCE employees, in partnership with extension officers, collected and analyzed data from 57 traps to track the spread of fall armyworm. Also in Ghana, CABI, an organization that supports farmers, uses WhatsApp as a place for plant doctors and extension workers to share information and ask questions about pests. In Zambia, CABI created Pest Risk Information Service which notifies plant doctors when there is a risk of pest infection.

While implementing strong management technologies, CABI and USAID/Ghana’s ADVANCE project have begun to implement diagnostic systems as well. These include hotlines, training extension workers and plant doctors on how to identify pests, and recommending the best solutions to manage them. CABI’s WhatsApp groups have been used by a limited number of extension workers and plant doctors as a source of identifying pests through picture sharing. While the adoption of these support technologies has expanded, most organizations researched have not used more sophisticated diagnostic support technologies, such as Plantix. 

Development organizations have also been using low-tech solutions to provide more information on managing pests. With the recent invasion of fall armyworm, they now focus especially on spreading fall armyworm information. In many cases, however, these solutions were reactive to the invasion and not proactive. For example, Farm Radio International, which uses radio programming to share information on agricultural best practices, began integrating pest management for fall armyworm into programming only after the outbreak in Ghana in May 2017. This was nearly a year and a half after the initial outbreak in Nigeria. Similarly, FarmerlineEsoko and Viamo began sharing information on pest management and fall armyworm via messages in local languages after the outbreak.

A Continental Solution that Combines Both?

With the understanding that most technology solutions used by agricultural development organizations revolve around management, mSTAR and D2FTF decided to explore the feasibility of the development of a mobile application that would both diagnose and provide a treatment plan. However, during the research it became apparent that with the spread and rate of the fall armyworm outbreak, interventions need to be deployed not only at the country level but on a continental level. Therefore, D2FTF decided to launch the Fall Armyworm Tech Prize instead of developing a mobile application specifically for Ghana. This prize will assist USAID in creating innovative digital tools and approaches to track the path of the pest, communicate interventions to smallholders and relay information to agriculture decision-makers and agents. The Fall Armyworm Tech Prize opened for applications on March 28, 2018. To learn more, follow the link here.  

Read Full Post »

Research Finds Protecting Pollinators is Critical For Food Security in Africa

twitter sharing button
facebook sharing button
email sharing button

Nov 06, 2020

butterfly
Photo Credit: Aleksandra Georgieva

This post is written by Sunday Ekesi, Michael Lattorff, Thomas Dubois, International Centre of Insect Physiology and Ecology (ICIPE).

Background

Pollination is crucial for food production, human livelihoods, and the preservation of biodiversity in natural ecosystems. Global crop production is highly dependent on pollinators. Approximately 75% of all crop plants are dependent on animal-mediated pollination and a recent analysis estimated the annual market value of pollinator services at US$235-577 billion. Thus, pollinators and the pollination services they provide serve a crucial function in food security. In many developing countries, agricultural production has become increasingly dependent on pollination services, as the relative number of pollination-dependent crops has increased three times compared to developed countries over the past 50 years. Pollination of crop plants by insects also contributes directly to human nutrition by increasing the availability of critical micronutrients. Animal-pollinated crops contain the majority of the available dietary lipid, vitamin A, C, and E, which are critical for the physical and intellectual development of children, as well as of key importance to other vulnerable groups including pregnant women, populations in disease risk regions (e.g. malaria endemic regions), and immuno-compromised individuals (due to malnutrition or pre-existing conditions). Beyond supporting crop production and human health through a diversified diet, pollinators are also a source of several commercial products (e.g., honey, wax, bee venom, royal jelly and resins) important for cosmetics, medicine, and cultural identity. Yet, despite their importance, pollinators are under increasing pressure and populations are declining worldwide.

Pollination R4D to improve food security: Examples from the International Centre of Insect Physiology & Ecology (ICIPE)

Assessing pollinator diversity

Globally, declines in insect pollinator populations (due to diverse factors including unsustainable agricultural practices, habitat destruction, and climate change) are threatening crop production amidst the growing demand for food driven by human population growth. To conserve and augment the population of pollinators for horticultural crops, we first need a basic understanding of their diversity. In this regard, we have undertaken surveys on avocado along the altitudinal gradient of the Eastern Afromontane region of Taita Hills, Kenya. Diverse pollinators belonging to 28 species in 14 families were observed visiting avocado. Overall, the proportion of honeybee (Apis mellifera) visits were the highest. In Murang’a, Kenya, a richer assembly of flower visitors was observed — including 73 species in 29 families. The most abundant families were ApidaeCalliphoridaeRhiniidae, and Syrphidae. Honeybees comprised 95.8% of Apidae. Other bee species included Braunsapis sp.Ceratina (Simioceratina) sp. (both Apidae), and Nomia sp., Lasioglossum sp., Pseudapis sp. (both Halictidae). On macadamia, stingless bee species from the genus Hypotrigona and Liotrigona have also been identified as efficient pollinators to enhance pollination and increase the productivity of the crop.

Understanding pollinator deficits and exploring opportunities to utilize pollinators to increase crop yields

Intensification of agriculture is leading to losses of wild pollinator species and hence of pollination services required to increase crop yields. As a result of the threats facing honeybees and other pollinators, ICIPE has been developing tools to utilize alternative managed pollinators (e.g., honeybees, stingless bees, and carpenter bees). In one of the major avocado growing areas of Kenya (Murang’a county), we analyzed the pollination deficit in avocado. This is the decrease in crop yield due to lack of sufficient pollination services. We found a 27% loss of fruits due to suboptimal pollination. However, supplementation of smallholder avocado farms with two honeybee colonies was sufficient to reverse this pollination deficit, increasing avocado yield by 180% and income by US$168 per farmer per season.

The domestication of stingless bees as alternative pollinators is a major component of activity at ICIPE. Through this activity, it has been possible to domesticate 14 species from East, West, and Central Africa; among which 6 have been widely evaluated and promoted with respect to their pollination efficiency. We are currently implementing activities for the use of stingless bee-targeted pollination on specific crops in open fields. In Kakamega, Kenya, research activities implemented jointly with smallholder farmers on pollination showed that stingless bee species, such as Hypotrigona gribodoi, are more efficient in improving green pepper fruit and seed quality in open fields compared to other wild pollinators. We also determined that the stingless bee species Meliponula bocandei and M. ferruginea are more efficient than honeybees in the pollination of sweet melon and cucumber. Recently, we also demonstrated that flower odor learning in stingless bees is species-specific, and that specific vibrational sounds are used to recruit foragers to crop plants. In an ongoing Mastercard Foundation-funded projects (Young Entrepreneurs in Silk and Honey [YESH] and More Young Entrepreneurs in Silk and Honey [MoYESH]) aimed at expanding commercial beekeeping, entrepreneurial and decent employment opportunities for >100,000 youth in Ethiopia, pollination of horticultural crops, especially vegetables using honeybees and stingless bees, along developed watersheds and rehabilitating landscapes, is being promoted as a complementary income generating opportunity while also providing diverse bee forages. Already, a cohort of 16,926 partner youth (59% female) have been recruited at project action sites and organized into 1,263 business enterprises designed to enhance agribusiness and income generation opportunities for rural youth and women in the country. Model beekeeping sites will be used to demonstrate managed beekeeping as an integral component of sustainable ecological farming that promotes healthy food, healthy farming, and a healthy environment.

Bee health R4D in support of pollination services

ICIPE has established the African Reference Laboratory for Bee Health (ARLBH) at its headquarters in Nairobi, Kenya, with four satellite stations in Liberia, Burkina Faso, Cameroon, and Ethiopia, as well as a diagnostic laboratory in Madagascar. This is the first of its kind in Africa. The ARLBH was accredited as a Collaborating Centre for Bee Health in Africa by the World Organization for Animal Health (OIE). Activities in the facility include assessment of environmental stressors like pesticides and habitat deterioration responsible for bee declines, development and establishment of diagnostic tools for pesticide residue analysis, surveillance for bee diseases, and establishing measures to protect them.

Improving habitat protection and restoration

Large-scale land transformation puts insect pollinators at risk, as land use change often results in degraded or fragmented habitats, that can no longer support pollinators due to the lack of nesting or foraging habitats. We have demonstrated that habitat deterioration, which includes natural forest loss, reforestation and afforestation with exotic tree species, negatively impacts species richness and diversity of stingless bees in sub-Saharan Africa. In fact, most stingless bee species are susceptible to habitat degradation since they tend to have very specific nesting requirements and only few species accept a broad range of natural and artificial substrates.

Strengthening pest and disease surveillance and management

Selected pollinator pests have been identified as being a particular concern to pollinator populations, including the wax moth (Galleria mellonella) and large and small hive beetles (Oplostomus haroldi and Aethina tumida) respectively. An initial survey provided high quality data that have been used, in combination with modeling approaches, to predict regions of high pest risk. The chemical and behavioral ecology of these pests has also been studied in detail, with the aim of developing control measures based on using chemical agents as attractants or repellents in traps. In Kenya, small hive beetles have also been identified as a major pest affecting stingless bee Meliponula species. Additionally, we have established that the Black Queen Cell virus that attacks honeybees can also be transmitted to stingless bees. Finally, we have also determined the resistance and tolerance mechanisms of African honeybees to the ectoparasitic mite Varroa destructor, potentially the most severe bee-pest. A plant-based bio-pesticide has been developed that is effective against the Varroa mite and has a repellent effect on the small hive beetle.

Decreasing the risk of pesticide use in crops and foraging plants, and adopting pollinator-friendly agricultural practices

While pesticide residue levels currently remain below international standard norms (e.g. EU standards), ICIPE and partners have observed an increase in pesticide residues in beehive products, which implies that pollinators are picking up pesticides applied to crops that could in turn affect their health. Pesticide use is increasing in sub-Saharan Africa, and ICIPE has piloted the use of ‘integrated pest and pollinator management (IPPM)’ to ensure that crop protection is harmonized with pollination services on pollinator-dependent crops such as avocado and cucurbits. In Kilimanjaro, Tanzania, and Murang’a, Kenya, we are implementing best-bet integrated pest management (IPM) package based on  fungal bio-pesticides, attract-and-kill products, and protein baits that enhance pollinator diversity while reducing pest populations (such as the oriental fruit fly — Bactrocera dorsalis — and the false codling moth — Thaumatotibia leucotreta) on avocado across landscapes. So far, more than 1,400 farmers in Murang’a have been trained on the use of IPPM, and many have adopted the practice to combat avocado pests without negatively impacting pollinators.

Understanding the bee microbiome to improve pollination services

Honeybees and stingless bees harbor diverse gut microbiota, which are critical to a variety of physiological processes — including digestion, detoxification, immune responses, and protection against pests and diseases. Surprisingly, whereas beekeeping has been widely promoted as a tool to mitigate poverty in tropical and subtropical regions of the world, no comprehensive studies of honeybee gut microbiota have been done in sub Saharan Africa where pollen and nectar resources are present year-round. Moreover, Africa hosts a highly significant diversity of bee species that might be associated with significant and uncharacterized gut microbe diversity selected for by different evolutionary pressures. ICIPE’s goal is to increase pollinator fitness and thus the pollination services they provide by investigating gut microbiota-host interactions. With the use of comparative genomics and microbiology tools, we are characterizing the nature of specific beneficial interactions. Results indicate that microbial abundance varies with geographical locations. We are currently investigating the parameters affecting this abundance as well as uncovering novel members of the microbiome that we found to be specific to Africa, in an effort to enhance pollinator health and pollination services.

Modeling climate change impact on pollinators

Climate shocks and land use change increasingly affect the life cycle as well as spatial and temporal distribution patterns of pollinators (e.g., honeybee, stingless bees), their pests, and the flowering plants upon which they depend for food and shelter. These habitat changes and climatic shifts have a trickle-down effect on pollination efficiency and thus food security. We are using replicable analytical methods and novel procedures for assessing the impact of climate and landscape change on the current and future distribution and abundance of honeybees, stingless bees, their pests, and flowering plants. Using long-term climate data with time-series satellite data variables overlaid on actual land surface properties and dynamics (i.e. changes in vegetation chlorophyll activity over time), we have developed accurate and realistic pest risk maps to guide interventions with regard to managing the pests of these pollinators using bio-pesticides without harming bees. Within the landscape mapping context, we have developed a sophisticated algorithm to map floral responses from spectral imagery. This is helping to understand the role of landscape fragmentation and the distribution, abundance, and temporal availability of flowering plants, pollinators, and pollination services. The knowledge on the value of natural habitats for bees within agro-ecological landscapes (using flowering and fragmentation maps) should be an incentive for the protection of these habitats.

Strengthening the capacity of farmers and national systems

Capacity building of farmers and national agricultural extension systems has been integral to building awareness of the important role pollinators play in improving food security. Training activities range from minimizing pesticide use, adopting pollinator-friendly agricultural practices, incentive to communities to support conservation of pollinators, and training of graduate students (PhD and MSc). Over 17,793 farmers and 816 extensionists have been trained across 21 Francophone and 23 Anglophone speaking countries across Africa. A total of 32 graduate students (PhD and MSc) have been trained across different countries (Kenya, Burkina Faso, Belgium, Uganda, Cameroon, Ethiopia, D.R. Congo, South Sudan, Nigeria, Ghana, Tanzania, Madagascar).

Read Full Post »

Plant Protection EBA Data in Action Technical Brief

twitter sharing button
facebook sharing button
email sharing button
placeholder

Feed the Future Enabling Environment for Food Security

Jan 26, 2018

Row of corn/maize, photo by Fintrac Kenya KHCP
Row of corn/maize. Photo by Fintrac Kenya USAID KHCP project.

Reliable pest management and robust pest control at country borders go hand in hand with strong agricultural and agribusiness sectors. Strong plant protection regulatory frameworks facilitate safe trade and help safeguard agriculture and the significant developments that have been achieved so far. Currently, Africa continues to battle an outbreak of invasive, transboundary pests including the Fall Armyworm (FAW). This pest was first reported in mainland West Africa (Nigeria, Togo, Benin) and the island of Sao Tome (Sao Tome and Principe) in early 2016 and is confirmed to be present in 28 African countries including several Feed the Future countries, Kenya, Mali, Nigeria, and Senegal. FAW in Africa has caused significant damage to maize crops in particular, a staple crop in many countries. Invasion by FAW will further impact international trade, since countries where the pest has not yet been detected are expected to place additional production or handling requirements on exports from FAW–affected countries (Day et al., 2017). Affected countries in Africa are prioritizing immediate and long-term solutions to mitigate and contain the devastating impacts of FAW. 

This brief, authored by the Feed the Future Enabling Environment for Food Security project, offers timely considerations for mitigating and addressing Fall Armyworm in Africa in the near and long term. The brief synthesizes plant protection data available through the 2017 World Bank Enabling the Business of Agriculture Index to identify opportunities to strengthen the regulatory environment for plant protection in sub-Saharan Africa and in support of the US Government Global Food Security Strategy (GFSS).

Read Full Post »

Researchers analyze roadmaps toward larger, greener global rice bowl

Nebraska Today/University of Nebraska-Lincoln

Close-up of rice plants

Shutterstock

Rice is the main food staple for more than half of the global population, and as the population grows, demand for rice is expected to grow, too.

But increasing global rice production is not a simple prospect.

“Global rice production is challenged now due to the negative environmental impact, water scarcity, labor shortage and slowing yield increases in many parts of the world,” said Shen Yuan, a postdoctoral research associate at Huazhong Agricultural University in China who spent two years as a visiting scholar at the University of Nebraska–Lincoln.

The challenge is producing more rice on existing cropland, and doing so while minimizing the environmental impact. New research led by Shaobing Peng, a professor of agronomy at Huazhong Agricultural University, and Patricio Grassini, associate professor of agronomy at Nebraska and co-leader of the Global Yield Gap Atlas, provides an analysis of roadmaps toward sustainable intensification for a larger global rice bowl. The research was published Dec. 9 in Nature Communications.

“Comparing rice cropping systems around the world in terms of productivity and efficiency in the use of applied inputs can help identify opportunities for improvement,” Grassini said.

The global assessment was led by Huazhong Agricultural University and the University of Nebraska–Lincoln, in collaboration with the University of California, Davis, and Texas A&M’s AgriLife Research Center in the United States; the International Rice Research Institute; Africa Rice Center; Indonesian Center for Rice Research and Assessment Institute of Agricultural Technology in Indonesia; Federal University of Santa Maria and EMBRAPA Arroz e Feijão in Brazil; National Institute of Agricultural Research in Uruguay; and Indian Institute of Farming Systems Research and Indian Institute of Water Management in India. The study assessed rice yields and efficiency in the use of water, fertilizer, pesticides and labor across 32 rice cropping systems that accounted for half of global rice harvested area.

“This study is the most comprehensive global evaluation of production systems for a major staple crop that I am aware of, and it will set the standard for future global comparison of such systems,” said Kenneth G. Cassman, professor emeritus at Nebraska and a co-author of the paper.

The good news, according to the study, is that there is still substantial room to increase rice production and reduce the negative environmental impact.

“Around two-thirds of the total rice area included in our study have yields that are below the yield that can be attained with good agronomic practices,” Yuan said. “Closing the existing yield gap requires better nutrient, pest, soil and water management, reduction of production risk and breeding programs that release rice cultivars with improved tolerance to evolving pests and diseases.”

Another important finding from the study is that food production and environmental goals do not conflict.

“We found that achieving high yields with small environmental impact per unit of production is possible,” Peng said. “Indeed, there is room for many rice systems to reduce the negative impact substantially while maintaining or even increasing rice yields.”

Producing more and minimizing the environmental footprint is an enormous challenge, Grassini said.

“Improved agronomic practices, complemented with proper institutions and policy, can help make rice cultivation more environmentally friendly,” Grassini said. “Our study marks a first step in identifying systems with the largest opportunities for increasing crop yields and resource-use efficiency, providing a blueprint to orient agricultural research and development programs at national to global scales.”SHARE1

NEWS RELEASE CONTACTS

Patricio Grassini, Associate Professor of Agronomy and Horticulture402-472-4398Website

TAGS

Read Full Post »

Opinion: African farmers can benefit from co-existence of agroecology and biotechnology

Pacifique Nshimiyimana | Cornell Alliance for Science | November 17, 2021

Print Friendly, PDF & Email
Credit: GreenBiz
Credit: GreenBiz

This article or excerpt is included in the GLP’s daily curated selection of ideologically diverse news, opinion and analysis of biotechnology innovation. It is posted under Fair Use guidelines.Can agroecology coexist with modern agricultural technologies? What is the reason for the fight against genetically modified (GM) cowpea or Golden Rice when the world’s most pressing food systems challenge is nutritional and food insecurity?

As the global community marked this year’s World Food Day on Oct. 16, where do African countries stand in respect to food and nutrition security? Is Europe’s antagonism toward certain food production systems and embrace of various ideologies going to expand to Africa too?

As the numbers of communities experiencing food insecurity rise, why are we still supporting divisions in the food system when we need to unite in the critical mission of stopping hunger and extreme poverty among our African population?Follow the latest news and policy debates on agricultural biotech and biomedicine? Subscribe to our newsletter.SIGN UP

In my country of Rwanda, the level of malnutrition and hunger leading to stunting among children under the age of five is still alarming, and it’s a scenario that is repeated in many African nations and other developing world countries. Due to the food production challenge, in Sub-Saharan Africa alone 34 percent of children under age 5 are stunted, leading to future generations of people who are mentally and physically impaired and more prone to disease.

In an effort to avoid replicating the mistakes of Western countries, where agroecologists often take hostile and antagonistic stances towards modern biotechnology and the green revolution, African countries are urged to separate themselves from such division for the sake of ending extreme hunger and poverty and meeting the United Nation’s 2030 goal of zero hunger.

African policymakers and world food system leaders are also urged to implement measures that will help African farmers benefit from both agroecology and modern biotechnology. The situation of food production in Africa is so fragile that African smallholder farmers and their communities can’t afford any more divisions in their food systems due to the agroecology movement’s antagonism towards modern biotechnology.

The COVID-19 pandemic and various farming-related plant diseases and insect challenges, like the locust swarms in East Africa, threaten the livelihood of millions. Resilient biotechnology crops that offer protection, like Nigeria’s insect-resistant and drought-tolerant TELA maize and insect-resistant GM cowpea, solve problems and economically empower farmers and rural communities. They should not be subjected to the western style of agroecology hatred towards biotechnology.

“The climate crisis demands that we innovate and give farmers in every country diverse tool kits. Agroecology and biotechnology can co-exist and be mutually supportive,” stated Matt Murray, acting assistant secretary for Economic and Business Affairs in the United States Department of State Department, while speaking at the 2021 World Food Prize.https://www.youtube.com/embed/e8h4F467vgs

Achieving coexistence between agroecology and modern biotechnology in African farming communities will be the turning point in promoting food security on the continent. It will also economically rejuvenate Africa’s large and small producers, who will finally enjoy the freedom of choice over what they produce and how they protect and manage their farming investments.

At a time when an increasing number of African countries are making wise decisions about adopting biotech crops that offer their farmers greater resilience in managing the effects of climate change, it is important to highlight their importance to the livelihoods of small producers.

The reduction of pesticide use that has accompanied the adoption of GM cotton in Kenya and GM cowpea in Nigeria, where the recent approval of TELA maize will also cut insecticide use, helps small farmers with limited means lower their production costs. But even importantly, it reduces the harmful impacts of excessive pesticides on both the environment and the lives of peasant farmers who typically apply these products without any personal protection equipment to guard their health.

This is but one area where agroecology and biotechnology have shared goals. We must now focus on other common goals and values to support, rather than divide, Africa’s farmers.

Pacifique Nshimiyimana is a social entrepreneur and founder of “Real Green Gold Ltd.” He has a graduate degree in Biotechnology from the University of Rwanda.

A version of this article was originally posted at the Cornell Alliance for Science and has been reposted here with permission. The Cornell Alliance for Science can be found on Twitter @ScienceAlly 

Read Full Post »

How do we feed our growing population?

Jacqueline Rowarth05:00, Oct 27 2021

The Detail: The sky-high cost of living in New Zealand

The Detail explores what makes our food so pricey when we produce enough to feed 40 million people.

There are also more than 350 restaurants, cafés and fast-food outlets involved – and the restaurant and ready-to-eat-food prices increased 4.6 per cent. Further, 30 per cent of the food budget is now spent on convenience, despite lockdown and the perceived focus on home cooking.

For the farmer, this means that more of what consumers spend is on processing and preparation, rather than on the basic food they have produced.

Food prices rose 4 per cent in the year ending September 2021 (file photo).
ALDEN WILLIAMS/STUFFFood prices rose 4 per cent in the year ending September 2021 (file photo).

The New Zealand Institute of Economic Research analysed the farm share of retail prices in 2019. Approximately 31 per cent of every dollar spent on meat returned to the farm, 19 per cent of dairy dollars, 22 per cent of grain dollars, 10 per cent of fruit, 16 per cent of vegetables and 2 per cent of the egg dollar.

Not much, really.

And farmers are consumers – so they have been hit by inflation like every other business. In the last quarter, prices paid by farmers have increased 5.9 per cent. Prices received were certainly up 4 per cent, but that hasn’t covered the increase in costs of fertiliser, fuel, electricity and wages.

Even more of a shock might be that what is being experienced in New Zealand in terms of increased food prices is nothing in comparison with that being experienced in the world. The FAO food price index has increased 32.8 per cent from September 2020 – food prices globally have increased by a third in a year.

Dr Jacqueline Rowarth: “Ever-cheaper food ... is likely to be a thing of the past as farmers try to manage improved productivity (more food with reduced inputs) within the uncertainties of a changing environment.”
STUFFDr Jacqueline Rowarth: “Ever-cheaper food … is likely to be a thing of the past as farmers try to manage improved productivity (more food with reduced inputs) within the uncertainties of a changing environment.”

Uncertainty in harvest due to Covid-19, fire, drought and flood, as well as demand, have combined to stimulate inflation not seen since 2011. Food accessibility (available and affordable) is an issue globally.

Ever-cheaper food, though an expectation in developed countries, is likely to be a thing of the past as farmers try to manage improved productivity (more food with reduced inputs) within the uncertainties of a changing environment – due to both the climate and regulation.

The problem with the latter is that regulations are not always made with an understanding of the consequences.View the dashboard Tracking the speed of the economy

On April 29, the Sri Lankan Cabinet approved a ban on importation of chemical fertilisers and other agrochemicals in a bid to become the first country to practise organic-only agriculture. Less than six months later and the government has backed down. Yields and quality of tea crashed.

Despite well-meaning belief, there was insufficient organic fertiliser available for the tea plantations. And with lower yields and quality, tea prices increased, meaning local tea drinkers were as unhappy as the growers.

Sri Lanka wanted to be the first country to practise organic-only agriculture. Less than six months later and the government backed down after yields and quality of tea crashed.
JAROMíR KAVAN/UNSPLASH Sri Lanka wanted to be the first country to practise organic-only agriculture. Less than six months later and the government backed down after yields and quality of tea crashed.

In the European Union, Farm Europe (a think tank) has calculated that the new farm to fork strategy will have significant impact on food supply, and hence food prices. The strategy recommends reducing the use of chemical pesticides by 50 per cent and fertilisers by 20 per cent, setting aside of at least 10 per cent of agricultural area under high-diversity landscape features and putting at least 25 per cent under organic farming.

The estimated result will be a reduction in food supply by 10 to 15 per cent in the key sectors of cereals, oilseeds, beef, dairy cows; over 15 per cent in pork and poultry; and over 5 per cent in vegetables and permanent crops. There will be an increase in prices by 17 per cent and little to no increase in biodiversity or ecological benefits.

Increasingly, research is showing that our best chance of preserving biodiversity and achieving ecological benefits is to ensure productivity gains on existing agricultural area. This will avoid needing more area to compensate – deforestation being the most obvious detrimental effect. The big differences in biodiversity are between natural and managed ecosystems, not within different types of management (organic versus conventional, for instance).Get the latest small business updates, straight to your inboxSubscribe for free 

While the wealthy countries develop new technologies to assist the challenge of meeting the nutritional needs of an ever-increasing global population from current agricultural land, work is vital with the less developed countries to help them achieve higher yields – to overcome what is known as the yield gap.

Better soil management, improved genetics and matching inputs with plant and animal needs (including health and welfare) is key. So is harvesting, processing, storage and distribution to reduce waste.

New Zealand farmers already hold global records in yield (grain) and low GHG (meat and milk). They are also leaders in precision agriculture. Food here is produced without the subsidies common in other countries. Removal of technological tools will increase prices to the consumer as already calculated for the EU.

For good policy to be developed, all the different consequences need evaluation. Research is showing the way.

– Dr Jacqueline Rowarth, Adjunct Professor Lincoln University, is a farmer-elected director of DairyNZ and Ravensdown. The analysis and conclusions above are her own. Contact her at jsrowarth@gmail.com.

Read Full Post »

Why global food prices are higher today than for most of modern history

September 27, 2021 8.45am EDT

Author

  1. Alastair SmithSenior Teaching Fellow in Global Sustainable Development, University of Warwick

Disclosure statement

Alastair Smith does not work for, consult, own shares in or receive funding from any company or organization that would benefit from this article, and has disclosed no relevant affiliations beyond their academic appointment.

Partners

University of Warwick

University of Warwick provides funding as a founding partner of The Conversation UK.

View all partners

CC BY NDWe believe in the free flow of information
Republish our articles for free, online or in print, under a Creative Commons license.

Republish this article

Global food prices shot up nearly 33% in September 2021 compared with the same period the year before. That’s according to the UN Food and Agriculture Organisation (FAO)‘s monthly Food Price Index, which also found that global prices have risen by more than 3% since July, reaching levels not seen since 2011.


https://embed-player.newsoveraudio.com/v4?key=x84olp&id=https://theconversation.com/why-global-food-prices-are-higher-today-than-for-most-of-modern-history-168210&bgColor=F5F5F5&color=D8352A&playColor=D8352A

You can listen to more articles from The Conversation, narrated by Noa, here.


The Food Price Index is designed to capture the combined outcome of changes in a range of food commodities, including vegetable oils, cereals, meat and sugar, and compare them month to month. It converts actual prices to an index, relative to average price levels between 2002 and 2004. This is the standard source for tracking food prices – nominal prices, as they’re known, which means they’re not adjusted for inflation.

While nominal prices tell us the monetary cost of buying food in the market, prices adjusted for inflation (what economists call “real” prices) are much more relevant to food security – how easily people can access appropriate nutrition. The prices of all goods and services tend to rise faster than average incomes (though not always). Inflation means that not only do buyers need to pay more per unit for food (due to its nominal price increase), but they have proportionately less money to spend on it, given the parallel price increases of everything else, except their wages and other incomes.

Don’t let yourself be misled. Understand issues with help from experts

Get the newsletter

Back in August, I analysed the FAO’s inflation-adjusted Food Price Index and found that real global food prices were actually higher than in 2011, when food riots contributed to the overthrow of governments in Libya and Egypt.

A graph comparing nominal and real food prices between 1961 and 2021.
Nominal prices are lower today than in 2011, but real prices are higher. Alastair Smith/FAO data, Author provided

Based on real prices, it is currently harder to buy food on the international market than in almost every other year since UN record keeping began in 1961. The only exceptions are 1974 and 1975. Those food price peaks occurred following the oil price spike of 1973, which drove rapid inflation in many parts of the global economy, including the production and distribution of food.

So what’s now pushing food prices to historic levels?

Fuel prices, bad weather and COVID-19

The drivers of average international food prices are always complicated. The prices of different commodities rise and fall based on universal factors, as well as those specific to each commodity and region.

For example, the oil price rise which started in April 2020 has affected the prices of all food commodities on the FAO index, by increasing the costs of producing and transporting food. Labour shortages resulting from the COVID pandemic have reduced the availability of workers to grow, harvest, process and distribute food, another universal cause of commodity price rises.

The real average price of food has actually been increasing since the year 2000, reversing the previous trend of a steady decline from the start of the 1960s. Despite global efforts – that have, in part, responded to targets set by both the UN Millennium Development and the subsequent Sustainable Development Goals to reduce hunger – prices have made food steadily less accessible.

No single commodity has been continually responsible for the average real price increase from 2000. But the price index of edible oil crops has grown significantly since March 2020, driven mainly by the price of vegetable oils shooting up by 16.9% between 2019 and 2020. According to FAO crop reports, this was due to the growing demand for biodiesel and unsupportive weather patterns.

A graph depicting commodity price change between 1960 and 2021.
Food oil prices recently hit a 20-year high. Alastair Smith/FAO data, Author provided

The other food category adding most to the overall food price rise is sugar. Here, again, unfavourable weather, including frost damage in Brazil, has reduced supply and inflated prices.

Cereals have added less to overall price increases, but their accessibility worldwide is particularly important for food security. Wheat, barley, maize, sorghum and rice account for at least 50% of global nutrition, and as much as 80% in the poorest countries. Global buffer stocks of these crops have been shrinking since 2017, as demand has outstripped supply. Running down stores has helped stabilise global markets, but prices have increased sharply from 2019.

Again, the reasons for individual fluctuations are complicated. But something that deserves attention is the number of times since the year 2000 “unpredictable” and “unfavourable weather” has been reported by the FAO to have caused “reduced harvest expectations”, “weather-stricken harvests” and “production decrease”.


Read more: Our climate is like reckless banking before the crash – it’s time to talk about near-term collapse


Europeans might worry about the price of pasta as Canadian droughts slash wheat harvests. But, as the real price index for cereals creeps towards levels that escalated riots over the price of bread into general uprisings in 2011, there is an urgent need to consider how communities in less affluent regions can weather these stresses and avoid unrest.

Our technological capacity and socioeconomic organisation cannot successfully manage unpredictable and unfavourable weather. Now would be a good time to imagine food supply in a world warmer by more than 2°C – an outcome now considered increasingly likely according to the most recent Intergovernmental Panel on Climate Change report.

Without radical changes, climate breakdown will continue to reduce international access to imported food, well beyond any historical precedent. Higher prices will reduce food security, and if there is one solid law of social science, it’s that hungry people take radical steps to secure their livelihoods – especially where leaders are perceived to have failed.

Read Full Post »

Registration is open for the IPPC webinar series on Fall Armyworm Training Material

Posted on Mon, 27 Sep 2021, 16:16Responsive image

IPPC Secretariat invites interested users to register for the “Fall Armyworm Training Material: FAO/IPPC Prevention, Preparedness, and Response Guidelines for Spodoptera frugiperda webinar series. (Please register individually for all three sessions in the series)

Webinar 1: 22 October 12:00-13:30 (CET) Register here

Content: Introduction, General launch and guidelines presentation, including FAW distribution and biology

Webinar 2: 19 November 12:00-13:30 (CET) Register here

Content: Fall Armyworm Prevention and Preparedness (When FAW is still absent from a country)

Webinar 3: 10 December 12:00-13:30 (CET) Register here

Content: Fall Armyworm Response and Communication (When FAW has been officially detected and confirmed by a country)

Webinars are addressed to Quarantine and biosecurity experts, NPPOs and RPPOs staffs, researchers supporting NPPOs, producer associations, technical assistance organizations, manufacturers of technical means of control, and surveillance.

The webinar will be held in English with simultaneous interpretation into French and Arabic.

To consult the detailed program and more information, please visit: https://www.ippc.int/en/news/workshops-events/webinars/fall-armyworm-faw-training-part-1-22-october-part-2-19-november-and-part-3-10-december/…..

Read Full Post »

Older Posts »