Feeds:
Posts
Comments

Archive for the ‘CRISPR’ Category

CRISPR is on the cusp of revolutionizing food and farming. Here is a global regulatory primer

Kyle DiamantasOlga BezzubovaPatricia Campbell | JD Supra | August 26, 2022

Print Friendly, PDF & Email
Credit: Varsity
Credit: Varsity

The ability to edit eukaryotic DNA entails an almost limitless ability to alter the genetic makeup of the plants that become our food. Recently, scientific attention has been directed to applying a class of new gene-editing techniques that utilize CRISPR to food crops for the introduction of commercially desirable traits. Gene-edited crops can have a positive impact on food productivity, quality, and environmental sustainability, and CRISPR is unique in its relative simplicity, robust flexibility, cost-effectiveness, and wide scope of use.

Follow the latest news and policy debates on agricultural biotech and biomedicine? Subscribe to our newsletter.

In general, the EU subjects agricultural products edited with CRISPR technology to the full suite of genetically modified organism (“GMO”) premarket approval, safety, and labeling requirements.

In contrast to the EU approach, the United States does not currently regulate CRISPR-edited agricultural products as GMOs. The United States regulates biotechnology and genetic modification in food through a “Coordinated Framework” between the U.S. Department of Agriculture (“USDA”), Food and Drug Administration (“FDA”), and Environmental Protection Agency (“EPA”).

The regulation of CRISPR-edited agriculture is continuing to develop across the world, with notably different approaches and outcomes. While the European Union expressly considers CRISPR-edited agriculture to be “genetically modified” and subject to associated regulations, the United States generally does not currently consider CRISPR-edited agriculture to be “genetically modified.”

This is an excerpt. Read the original post here

Read Full Post »

omeCropsCotton Cotton gene-editing project aims to make plant more insect resistant

Cotton gene-editing project aims to make plant more insect resistant

Shelley E. Huguleybanner- swfp-shelley-huguley-eddie-eric-smith-jdcs770-20.jpg

Texas A&M AgriLife, USDA and Cotton Incorporated collaborate on the research project.

Farm Press Staff | Aug 24, 2022

SUGGESTED EVENT

fps-generic.jpg

Farm Progress Show

Aug 30, 2022 to Sep 01, 2022

Scieintists in the Texas A&M Department of Entomology have received a matching grant of almost $150,000 to conduct a three-year project to research novel pest management tools for cotton production. If successful, the project, Modifying Terpene Biosynthesis in Cotton to Enhance Insect Resistance Using a Transgene-free CRISPR/CAS9 Approach, could provide positive cost-benefit results that ripple through the economy and environment.

The project goal is to silence genes in cotton that produce monoterpenes, chemicals that produce an odor pest insects home in on, said Greg Sword, Texas A&M AgriLife Research scientist, Regents professor and Charles R. Parencia Endowed chair in the Department of Entomology. By removing odors that pests associate with a good place to feed and reproduce, scientists believe they can reduce infestations, which will in turn reduce pesticide use and improve profitability.

https://2233b2c8ae3755eb6b86d67811f920b1.safeframe.googlesyndication.com/safeframe/1-0-38/html/container.html

Research to improve a plant’s ability to tolerate or resist pest insects and diseases via breeding programs is nothing new, Sword said. But editing genomes in plants and pest insects is a relatively new and rapidly advancing methodology.

swfp-shelley-huguley-sam-stanley-cotton-drip-22.jpgA gene-editing project aims to expose and exploit simple but key ecological interactions between plants and insects that could help protect the plant. This is Sam Stanley’s 2022 drip-irrigated cotton near Levelland, Texas. (Photo by Shelley E. Huguley)

Sequencing genomes of interest and using the gene-editing tool CRISPR have become increasingly viable ways to identify and influence plant or animal characteristics. 

However, using gene-editing technology to remove a characteristic to make plants more resistant to pests is novel, Sword said. The research could be the genesis for a giant leap in new methodologies designed to protect plants from insects and other threats. 

Sword’s gene-editing project aims to expose and exploit simple but key ecological interactions between plants and insects that could help protect the plant.

“Insects are perpetually evolving resistance to whatever we throw at them,” Sword said. “So, it’s important that our tools continue to evolve.”

The matching grant is from both the U.S. Department of Agriculture National Institute of Food and Agriculture, NIFA, and the Cotton Board, a commodity group that represents thousands of growers across Texas and the U.S. The grant totals $294,000.

Critical seed funding 

Sword is collaborating with Anjel Helms, chemical ecologist and assistant professor in the Department of Entomology; Michael Thomson, AgriLife Research geneticist in the Department of Soil and Crop Sciences and the Crop Genome Editing Laboratory; and graduate student Mason Clark.

This research team is working on a project that was “seeded” by Cotton Incorporated, the industry’s not-for-profit company that supports research, marketing and promotion of cotton and cotton products.

The seed money allowed the AgriLife Research team to create a graduate position for Clark and produce preliminary data that laid the foundation for the NIFA grant proposal, Sword said. In addition, the terpene research is part of larger and parallel projects that began with direct support from Cotton Incorporated.    

“Cotton Incorporated’s support has been absolutely critical to jumpstart the project from the beginning,” he said. “From a scientific standpoint, industry support and collaboration are vital to project success, whether that’s leveraging money for research or identifying, focusing on and solving a problem, which actually helps producers.”

Industry collaborations strengthen the impact

Texas cotton production represents a $2.4 billion contribution to the state’s gross domestic product. From 2019 to 2021, Texas cotton producers averaged 6.2 million bales of cotton on 4.6 million harvested acres, generating $2.1 billion in production value. The Texas cotton industry supports more than 40,000 jobs statewide and $1.55 billion in annual labor income.

Research like Sword’s is augmented and sometimes directly funded by commodity groups representing producers and related industries.

swfp-shelley-huguley-eddie-eric-smith-jdcs770-32.jpg

Projects supported by the Cotton Board and Cotton Incorporated run the gamut of production, including reducing plant water demands, increasing pest and disease resistance, and improving seed and fiber quality. (Photo by Shelley E. Huguley)

Jeffrey W. Savell, vice chancellor and dean for Agriculture and Life Sciences, said collaborative projects help research dollars make the greatest impact for producers. Texas A&M AgriLife’s relationships with commodity groups that represent producers can jumpstart groundbreaking work and help established programs maintain forward momentum.

“Cotton Incorporated is one of our long-time partners, and that collaboration has made an enormous impact on individuals, farming operations, communities and the state,” Savell said. “This project is just one example of how we can do more by engaging with the producers we serve.”

The Cotton Board’s research investment

Bill Gillon, president and CEO of the Cotton Board, said projects supported by the Cotton Board and Cotton Incorporated have run the gamut of production, including reducing plant water demands, increasing pest and disease resistance, and improving seed and fiber quality.

Cotton Incorporated scientists typically identify a need or a vulnerability and create and prioritize topics for potential projects. These projects are developed in coordination with agricultural research programs that will either be directly funded by the group or could be submitted to funding agencies for competitive grants. The Cotton Board reviews project proposals and approves them for submission to NIFA for competitive grant dollars.

The Cotton Board’s Cotton Research and Promotion Program has generated more than $4 million in competitive cotton research grants from NIFA over the past three years, Gillon said. When coupled with $1.35 million from the Cotton Board, the program has generated $5.4 million in agricultural research funding for projects critical to improving productivity and sustainability for upland cotton growers in the U.S.

Gillon said funding-match grants represent a collaborative investment that maximizes financial support for science, ultimately impacting growers and local economies throughout Texas and the Cotton Belt.

swfp-shelley-huguley-21-cotton-harvest-sunset-vert.jpgPublic-private strategic support for research emphasizing sustainable practices across the agricultural spectrum has far-reaching benefits, says Phillip Kaufman, head of the Department of Entomology, Texas A&M University. (Photo by Shelley E. Huguley)

“We value our long-standing relationship with Texas A&M and other institutions across the Cotton Belt because the work would not be done without their expertise,” he said. “We certainly view this as a partnership and want to support their land-grant mission and help researchers maintain their capabilities, programs and labs that continue to produce results critical for cotton producers and agricultural production.” 

Industry buy-in 

Phillip Kaufman, head of the Department of Entomology, said an overarching goal for his department is addressing relevant topics or concerns, from public health to agricultural production. Whether research meets the immediate needs of producers or lays the foundation for breakthroughs in coming decades, many agricultural research projects’ relevance is guided by producer input.

Industry buy-in is critical to entomology research, he said. Topics relevant to commodities, in this case, cotton, and the public’s interest, in this case, NIFA, is a good representation of how the land-grant mission delivers for producers but can also ripple through communities, the economy and the environment.

Kaufman said public-private strategic support for research emphasizing sustainable practices across the agricultural spectrum has far-reaching benefits.

“This grant project is a good example of how cotton producers, the gins and other elements of their industry effectively tax themselves to fund campaigns and research that adds value to what they produce,” he said. “It also shows the motivation from a public dollar perspective to invest in research focused on providing pest control methods that reduce chemical use.”

TAGS: INSECTS

Read Full Post »

CRISPR gene-edited rice could help soil bacteria produce nitrogen fertilizer. Here’s how it works

Genetic Engineering & Biotechnology News | August 18, 2022

Print Friendly, PDF & Email
Nitrogen fertilizers are very expensive, this innovation could make plants use them more efficiently. Credit: RusticWise
Nitrogen fertilizers are very expensive, this innovation could make plants use them more efficiently. Credit: RusticWise

Researchers have used CRISPR to engineer rice that encourages soil bacteria to fix nitrogen, which is required for their growth. The findings may reduce the amount of nitrogen fertilizers needed to grow cereal crops, save farmers in the United States billions of dollars annually, and benefit the environment by reducing nitrogen pollution.

“Plants are incredible chemical factories,” said Eduardo Blumwald, PhD, a distinguished professor of plant sciences from the University of California, Davis, who led the research. His team used CRISPR to enhance apigenin breakdown in rice. They found that apigenin and other compounds induced nitrogen fixation in bacteria.

Follow the latest news and policy debates on agricultural biotech and biomedicine? Subscribe to our newsletter.

SIGN UP

Then they identified the pathways generating the chemicals and used CRISPR gene editing technology to increase the production of compounds that stimulated the formation of biofilms. Those biofilms contain bacteria that enhanced nitrogen conversion. As a result, nitrogen-fixing activity of the bacteria increased, as did the amount of ammonium available for the plants.

Much of the fertilizer that is applied is lost, leaching into soils and groundwater. Blumwald’s discovery could help the environment by reducing nitrogen pollution. “What this could do is provide a sustainable alternative agricultural practice that reduces the use of excessive nitrogen fertilizers,” he said.

This is an excerpt. Read the original post here

Read Full Post »

A New Green Revolution Is in the Offing

Thanks to some amazing recent crop biotech breakthroughs

RONALD BAILEY | 8.10.2022 5:00 PM

Share on FacebookShare on TwitterShare on RedditShare by emailPrint friendly versionCopy page URL

man stands in wheat field facing away from camera with outstretched arms

(Noam Armonn | Dreamstime.com)

A recent spate of crop biotech breakthroughs presage a New Green Revolution that will boost crop production, shrink agriculture’s environmental footprint, help us weather future climate change, and provide better nutrition for the world’s growing population.

The first Green Revolution was generated through the crop breeding successes pioneered by agronomist Norman Borlaug back in the 1960s. The high-yielding dwarf wheat varieties bred by Borlaug and his team more than doubled grain yields. The Green Revolution averted the global famines confidently predicted for the 1970s by population doomsters like Stanford entomologist Paul Ehrlich. Other crop breeders using Borlaug’s insights boosted yields for other staple grains. Since 1961, global cereal production has increased 400 percent while the world population grew by 260 percent. Borlaug was awarded the Nobel Peace Prize in 1970 for his accomplishments. Of course, the disruptions of the COVID-19 pandemic and Russia’s invasion of Ukraine are currently roiling grain and fertilizer supplies.

Borlaug needed 20 years of painstaking crossbreeding to develop his high-yield and disease-resistant wheat varieties. Today, crop breeders are taking advantage of the tools of modern biotechnology that can dramatically increase the rate at which yields increase and drought- and disease-resistance can be imbued in crops.

The Green Revolution’s crops required increased fertilizer applications to achieve their higher yields. However, fertilizers have some ecologically deleterious side effects. For example, the surface runoff of nitrogen and other fertilizers not absorbed by crops spurs the growth of harmful alga in rivers, lakes, and coastal areas. In addition, excess nitrogen fertilizer gets broken down by soil bacteria such that there are rising atmospheric concentrations of the greenhouse gas nitrous oxide, which, pound for pound, has 300 times the global warming potential of carbon dioxide.

The good news is that in the last month, two teams of modern plant breeders have made breakthroughs that will dramatically cut the amount of nitrogen fertilizers crops need for grain production. In July, Chinese researchers reported the development of “supercharged” rice and wheat crops, which they achieved by doubling the expression of a regulatory gene that increases nitrogen uptake by four- to fivefold and enhances photosynthesis. In field trials, the yields of the modified rice were 40 to 70 percent higher than those of the conventional varieties. One upshot is that farmers can grow more food on less land using fewer costly inputs.

Some crops like soybeans and alfalfa get most of the nitrogen fertilizer they need through their symbiotic relationship with nitrogen-fixing soil bacteria. Soybeans supply the bacteria living on their roots with sugars, and the bacteria in turn take nitrogen from the air and turn it into nitrate and ammonia fertilizers for the plants. However, nitrogen-fixing bacteria do not colonize the roots of cereal crops.

A team of researchers associated with the University of California Davis reported in July their success in gene editing rice varieties to make their roots hospitable to nitrogen-fixing bacteria. As a result, when grown under conditions of limited soil nitrogen, the yields of the gene-edited varieties were 20 to 35 percent higher than those of the conventional varieties. The researchers believe their gene-editing techniques can be applied to other cereal crops.

This new biotech-enabled Green Revolution promises a future in which more food from higher yields grown using less fertilizer means more farmland restored to nature, less water pollution, and reduced greenhouse gas emissions.

Sponsored Videos

Read Full Post »

Study: How GMOs and crop gene editing can increase genetic diversity and help contain climate change

Helen CurrySarah Garland | PLOS Biology | August 3, 2022

Print Friendly, PDF & Email
Credit: kwest via Shutterstock
Credit: kwest via Shutterstock

As climate change increasingly threatens agricultural production, expanding genetic diversity in crops is an important strategy for climate resilience in many agricultural contexts. In this Essay, we explore the potential of crop biotechnology to contribute to this diversification, especially in industrialized systems, by using historical perspectives to frame the current dialogue surrounding recent innovations in gene editing. We unearth comments about the possibility of enhancing crop diversity made by ambitious scientists in the early days of recombinant DNA and follow the implementation of this technology, which has not generated the diversification some anticipated.

We then turn to recent claims about the promise of gene editing tools with respect to this same goal. We encourage researchers and other stakeholders to engage in activities beyond the laboratory if they hope to see what is technologically possible translated into practice at this critical point in agricultural transformation.

A new hope: Gene editing for crop diversity

Leading plant scientists today praise innovative gene editing techniques as game-changing methods destined to fulfill aspirations for expanding crop genetic diversity through biotechnology. This fanfare sounds familiar, as scientists throughout the history of crop breeding have heralded various innovations in similar ways, most recently with the expectation that recombinant DNA would create paradigm-shifting possibilities. What, if anything, is different about the potential of gene editing technologies with respect to genetic diversity?

Gene editing …  offers opportunities to radically rethink the breeding process in ways that enhance genetic diversity by “restarting” crop domestication. Crop domestication relies upon a combination of spontaneously occurring genetic mutations and artificial selection by humans. In wild rice, for example, grains shatter in order to widely disperse the seed. During rice domestication, a mutation arose that caused non-shattering grains, a trait beneficial for early agricultural societies and therefore selected for cultivation. Rice wild relatives today carry beneficial traits like adaptation to diverse growth environments but their grains still shatter.

…Using biotechnology to expand crop genetic diversity will also require that researchers understand the many junctures in crop variety development and dissemination, especially those linked to seed commercialization, that work against such expansion. Addressing these obstacles will involve addressing issues as varied as farmer seed choice, seed certification processes, and international intellectual property regimes. It will require engaging with and developing further interdisciplinary and participatory research efforts to map infrastructural obstacles and to indicate actions that different stakeholders can take to facilitate genetic diversification.

This is an excerpt. Read the original post here

combined disclaimer improved outlined@ x

Read Full Post »

Following a fungus from genes to tree disease: a journey in science

Published: June 30, 2022 9.36am EDT

Author

  1. Brenda WingfieldPrevious Vice President of the Academy of Science of South Africa and DSI-NRF SARChI chair in Fungal Genomics, Professor in Genetics, University of Pretoria, University of Pretoria

Disclosure statement

Brenda Wingfield receives funding from the South African Department of Science and Innovation via the National Research Foundation (NRF). She is a fellow of the Academy of Science of South Africa, African Academy of Science and the Third World Academy of Science She is the Secretary General of the International Society of Plant Pathology and a fellow of the American Phytopathological Society She is the current chair of the NRF Executive Evaluation Committee

Partners

University of Pretoria

University of Pretoria provides funding as a partner of The Conversation AFRICA.

View all partners

CC BY NDWe believe in the free flow of information
Republish our articles for free, online or in print, under a Creative Commons license.

Republish this article

 Email

 Twitter9

 Facebook10

 LinkedIn

 Print

Anyone who reads even a little about science and technology will be familiar by now with the idea of genome sequencing. This process involves breaking an organism’s DNA into fragments to study their compositions or sequences. Then the fragments are aligned and merged to reconstruct the original sequence.

But why sequence an organism’s genome? What’s the value for ordinary people and the world more broadly? The answers are immediately obvious when it comes to the medical field. Understanding what makes a disease “tick” offers scientists a way to treat or prevent it. Sequencing the genome of a crop or animal can improve agricultural yields or make species hardier in shifting climates.

It’s a little tougher to explain the value of sequencing the genome of plant pathogens, the organisms that cause diseases in plants. But this has become a critical part of the work of microbiologists and plant pathologists. And it is important, far beyond the laboratory: by carefully studying plant pathogens’ genomes, researchers have been able to design specific double stranded RNA fungicides to short circuit some pathogens’ abilities to harm plants.

These fungicides have not yet been deployed commercially but have huge potential – only targeted species will be affected and so the process is likely to be more environmentally friendly than any involving chemical fungicides. This research has the potential to protect crops, benefiting agriculture and contributing to food security.

Analysis of the world, from experts

Get our newsletter

For the past 13 years I’ve focused on sequencing one plant pathogen’s genome. Here’s where that scientific journey has led.

Pine trees at risk

sequenced the genome of a fungus called Fusarium circinatum in 2009; it was the first fungal genome sequence to be conducted on the African continent.

I started studying this pathogen more than 20 years ago because it was killing seedlings in South African pine nurseries. Fusarium circinatum causes pitch canker on pine trees, which makes trees exude pitch or resin. In severe cases the fungus causes tree death. This fungus is considered to be the most important pathogen threat to the global plantation pine industry. It is also potentially devastating in some areas of the southern US, Central America, Europe and Asia, where pines are found naturally.

Trees are extremely important in carbon sequestration. They also produce oxygen – it is estimated that, daily, one tree can produce enough oxygen for four people. Trees have huge economic value, too, providing timber for our homes and paper and packaging for many uses in our daily lives. It is difficult to estimate the total value of pine plantations globally but the South African industry is estimated to contribute more than US$2 billion to the country’s Gross Domestic Product annually.

Sequencing the genome was just the beginning. Follow-up studies published in 2021 involved knocking genes out of the genome and studying what happened. This process is a bit like first identifying and lining up all the parts, then removing these parts one at a time to see what difference they make to the functioning of the fungus. Sometimes we need to understand how gene products (proteins) interact with each other and then more than one gene might be removed from a genome.

In this way, my colleagues and I can learn which genes are important to the processes that Fusarium circinatum uses to cause pitch canker and which are not. Now we’re working to target the important genes in studies to manage the pathogen.

It’s time-consuming work: this fungus has around 14,000 genes. This is more than the yeast that is used to ferment beer, which has 6000 genes, but less than the estimated 25,000 genes in the human genome. Luckily technologies are evolving rapidly to enable routine gene knock-outs. This involves a protein which acts a bit like DNA-specific scissors allowing deletion of a specific sequence of DNA. The position where the protein cuts is guided by using small pieces of RNA sequence that are identical to the target DNA sequence.


Read more: What is CRISPR, the gene editing technology that won the Chemistry Nobel prize?


Another of our key findings is that Fusarium circinatum has acquired, through horizontal gene transfer from other organisms, a group of five genes that apparently enhance its growth.

This discovery has been very useful in developing a specific diagnostic tool using LAMP PCR (Loop-mediated isothermal amplification) to identify this pathogen. This is a special kind of highly sensitive test that was developed to allow for in-field detection of pathogens. It also doesn’t require specialised training. This is useful because trees only recently infected with Fusarium circinatum can be asymptomatic. It’s crucial to determine the presence of the pathogen as early as possible so its spread can be better managed.

New skills, new possibilities

The rise in studies that sequence plant pathogens’ genomes has also opened up opportunities for scientists to develop new skills. The data generated by genome sequencing sometimes outstrips the number of researchers available to analyse it. During pandemic lockdowns in South Africa, some students in my research programme learned how to code and developed skills in bioinformatics, using computers to capture and analyse biological data rather than working in a laboratory.

With these new skills, as well as fast-improving technology, we may well crack Fusarium circinatum’s code once and for all. And that will help to guard pine trees against a dangerous, costly pathogen.

Read Full Post »

What role can genetics play in ‘designing’ more sustainable crops, livestock and trees?

Rodolphe Barrangou | National Academy of Engineering | July 1, 2022

Print Friendly, PDF & Email
Plants, animals and microbes can be improved with gene editing. Credit: Carys-ink
Plants, animals and microbes can be improved with gene editing. Credit: Carys-ink

The ability to engineer genomes and tinker with DNA sequences with unprecedented ease, speed, and scale is inspiring breeders of all biological entities. Genome engineers have deployed CRISPR tools in species from viruses and bacteria to plants and trees (whose genome can be 10 times larger than the human genome), including species used in food and agriculture (Zhu et al. 2020).

Follow the latest news and policy debates on agricultural biotech and biomedicine? Subscribe to our newsletter.

SIGN UP

Starting small, bacteria used in food fermentations have had their genomes enhanced to optimize their functional attributes linked to the flavor and texture of fermented dairy products such as yogurt and cheese. The fact that CRISPR-Cas systems provide adaptive immunity against viruses in dairy bacteria led to the commercial launch, more than a decade ago, of bacterial starter cultures with enhanced phage immunity in industrial settings. Most fermented dairy products are now manufactured using CRISPR-enhanced starter cultures. Since then, a variety of bacteria, yeast, and fungi (figure 2) involved in the manufacturing of bioproducts has also been CRISPR enhanced to yield commercial products such as enzymes, detergents, and dietary supplements.

Moving along the farm-to-fork spectrum, most commercial crops—from corn, soy, wheat, and rice to fruits and vegetables—have had their genomes altered (figure 2). Genome engineering is used to increase yield (e.g., meristem size, grain weight) and improve quality (e.g., starch and gluten content), pest resistance (e.g., to bacteria, fungi, viruses), and environmental resilience (e.g., to drought, heat, frost). For instance, nonbrowning mushrooms with extended shelf life can be generated, and tomatoes with increased amounts of gamma aminobutyric acid (GABA) to enhance brain health have been commercialized. In addition, efforts are underway to enhance nutritional value.

Follow the latest news and policy debates on agricultural biotech and biomedicine? Subscribe to our newsletter.

SIGN UP

Credit: NAE

Livestock breeders have joined the fray, with genome engineering of main farm species such as swine (leaner bacon), poultry (CRISPR chicken), and cattle (for both meat and dairy). Swine have also been edited with a viral receptor knockout to prevent porcine reproductive and respiratory syndrome; the approach is being evaluated for regulatory approval (Burkard et al. 2017). Breeding applications include hornless cows (for more humane treatment), resistance to infectious disease (tuberculosis in cattle), and removal of viral sequences in the genome of elite commercial livestock,[1] notably swine. The CRISPR zoo also encompasses genetically diverse species—fish (tiger-puffer and red sea bream), cats (efforts are underway to develop hypoallergenic variants), and even butterflies (wing pattern)—illustrating the ability to deploy this technology broadly.

This is an excerpt. Read the original post here

Read Full Post »

Kenyan gene hacker moves to defeat witchweed

Prof Steven Runo has edited the DNA of sorghum to give it resistance to the notorious, parasitic weed

In Summary

•Traditionally, farmers would attempt to control Striga by simple, physical means. These included physically uprooting the plants, which wasn’t particularly effective, considering that the weed knots itself within the host’s roots.

•Prof Runo is an associate professor of molecular biology at Kenyatta University.

Among the towering names in genome editing in Kenya is Professor Steven Runo

The world is making tremendous strides in the novel science of genome editing, which has wide-ranging applications in medicine and agriculture, among other fields.

Kenyan scientists have also joined the effort, with several pioneering research projects underway right within the country.

Among the towering names in genome editing in Kenya is Prof Steven Runo, an associate professor of molecular biology at Kenyatta University. Part of his research work targets Striga, also known as witchweed, a notorious weed that threatens maize, sorghum, rice and several other cereal crops.

Known in parts of western Kenya, where it is particularly rife, as Uyongo or Kayongo, Striga is a predatory plant that attaches itself to the roots of the host plant, from where it saps vital nutrients from the host. This invariably leads to stunted growth and vastly diminished production.

“Genome editing is a new technology for not only plant breeding but also animal breeding,” Prof Runo said.

“It’s a very simple strategy. Think about the DNA, which is what determines the traits of organisms. How tall or short we are, and how much yield you get from a crop, is determined by the genetic code”.

With this in mind, scientists like Prof Runo are able to introduce changes to an organism’s DNA, with an aim to alter specific traits in the organism.

“Genome editing involves going into the genome and introducing beneficial changes, and very precisely at that,” he said. “So, you can go into a specific trait and alter one or two bases – or DNA sequences – to achieve the trait that you are looking for. One of the ways that genome editing can be done is using CRISPR Cas9 technology, a very simple alteration of DNA sequence for beneficial traits”.

Traditionally, farmers would attempt to control Striga by simple, physical means. These included physically uprooting the plants, which wasn’t particularly effective, considering that the weed knots itself within the host’s roots.

And upon maturity, the weed deposits its seeds in the soil, which makes it difficult for farmers to control it.

Farmers would also practice crop rotation or intercropping with legumes, which helps control Striga’s germination. They would also apply inorganic fertiliser to enrich the soils, as Striga thrives in poor soils within low-rainfall regions.

The use of pesticides would also be recommended as a control measure against Striga, but chemical controls are normally not within reach of many small-scale farmers.

“While a few control measures have been moderately successful, the problem still persists, especially in western Kenya, eastern Uganda and lake zone of Tanzania, where farmers have frequently voiced their frustrations at the ubiquity of this invasive weed,” states The International Maize and Wheat Improvement Center (CIMMYT).

That’s where biotechnology chips in, with novel technologies that aim at controlling the proliferation of pathogenic plants, and minimizing the labour and costs in pesticides that farmers would ordinarily incur.

Prof Runo’s project, titled “Evaluation of Striga resistance in Low Germination Stimulant 1 (LGS1) mutant sorghum”, seeks to confer resistance to this parasitic weed in sorghum, an important cereal crop in Kenya and many parts of Africa.

A proof of concept has already been done for the project, and the program awaits other stages in product development, which will ultimately culminate in trials.

“This weed is present in most parts of Sub-Saharan Africa, and Kenya is one of those countries that is heavily infested by the parasite,” Professor Runo told Tuko recently.

“Depending on the level of infestation, Striga can cause between 30-100 percent in yield losses. We estimate this to cost about US$ 7 billion globally every year. This is a substantial amount of money, considering that this weed affects cereal crops, mostly grown by small-scale farmers”.

Many counties in Western Kenya have Striga infection, he adds – from Busia to Siaya, Kisumu and Homabay.

“Almost all countries within western Kenya have Striga infection”.

He is honored to be at the forefront of such groundbreaking research, and appreciates the opportunity to deploy his expertise in this highly complex science towards finding solutions for common problems that have dogged local farmers.

“You’d be happy to know that Kenya has very good human resource in terms of very well trained scientists. What we want to showcase is that these scientists can do research that is comparable to research that is done in other countries. Again, we have a long-standing history of using advances in plant sciences to develop and grow better crops”.

There are plenty of good reasons to support local scientific expertise, he adds, citing the case of Asia.

“The success that we are seeing in Asia, in terms of agricultural advancement, was because scientists were supported. They’d say, we have a critical number of scientists that have innovations, and they’d use science-based and evidence-based facts to support and make decisions and policy in agriculture. Such an approach goes a long way towards growth improvement, and ultimately improves food security”.

Read Full Post »

How is Rwanda faring in agricultural bio-technology?

Michel NkurunzizaBy 

Michel NkurunzizaPublished : June 28, 2022 | Updated : June 29, 2022

Agricultural experts are making a case for adopting agricultural biotechnology as crop production remains insufficient for both local consumption and exportation yet Rwanda’s economy relies on agriculture.

Plant or agricultural biotechnology bio-technology can be defined as the use of tissue culture and genetic engineering techniques to produce genetically modified plants that exhibit new or improved desirable characteristics.

Bio-technology has helped to make both insect pest control and weed management safer and easier while safeguarding crops against devastating diseases.

According to the recent publication “Plant biotechnology: A key tool to improve crop production in Rwanda” published in African Journal of Biotechnology by  Leonce Dusengemungu, Clement Igiraneza and Sonia Uwimbabazi, intensive and appealing discussions about agriculture economic importance, production of improved crops and the use of all necessary resources to ameliorate agricultural production need more attention.

Agricultural experts are making a case for adopting agricultural biotechnology as crop production remains insufficient for both local consumption and exportation yet Rwanda’s economy relies on agriculture. Photo: Sam Ngendahimana.

The study aimed at gathering the information on Rwanda’s agriculture based on different research reports and Rwandan’s government established policies to identify constraints to agricultural production faced by farmers and applicability of plant biotechnology.

“Rwanda as any other Sub-Saharan African countries are in need of free-disease plantlets for highly cultivated crops and to achieve this, plant biotechnology holds the key to high agricultural productivity.

Use of plant biotechnology has to be highly considered as a means to solve some agri-related problems since its benefits can speed up the economy and stimulate the research processes,” they said.

According to the researchers, Rwanda’s farming suffers shortage of quality planting materials due to few production companies or organizations of good quality seeds.

“It is desirable for farmers to use quality seeds that are of high value that can benefit them. That is why more proper seed storage units, tissue culture production units and other possible alternative methods to increase the number of quality planting materials are needed,” they said.

The trio said that the use of biotechnology tools to protect seed distributed among farmers, biological control agents and testing varieties of seed identity and purity before their distribution are primary tools that can benefit African farmers.

“In this context, it is recommended for developing African countries to start thinking about pursuing gene transfer to breed-disease and introduction of pest resistant varieties in order to meet the future food’s needs,” they recommended.

The modern agriculture biotechnology, they said, is needed as the conventional agricultural research does not keep an equal distribution between the high demand of food and the supply chain.

Despite the difficulties in sharing information between scientists across the country, they said, the information gathered about the current status of plant biotechnology in Rwanda from some researchers in Rwanda Agriculture Board (RAB) have reported the use of tissue culture: in vitro cultivation of cash crops like banana, coffee, potato, sweet potato, pineapple, passion fruit, Tamarillo also known as a tree tomato.

“Several private companies have also initiated in vitro production of crops including bananas. The effort made still does not provide enough for the high demand of plantlets from the farmers. Disseminating resistant varieties produced using plant breeding technology is highly recommended since most of the varieties that are brought from abroad sometimes fail to adapt,” the trio suggested.

They suggest more research is needed to identify and use suitable domestic breeding techniques for popular varieties in the country, and this should be widespread to other crops since the only crops receiving research attention are common beans, bananas, cassava and sweet potatoes.

Plant biotechnology status in Rwanda

Rwanda’s plant biotechnology is mostly dominated by tissue culture of medicinal plants and micro-propagation of disease-free food crops mainly bananas, potato, sweet potato and cassava.

“To ensure food security, appropriate measures to increase the capacity of plant biotechnology should be a priority,” they said.

Tissue culture practiced in Rwanda is one of the techniques that is believed can solve agriculture production problems because it has so many advantages, one of them being the high multiplication of plantlets in a short time and space.

The plants produced with tissue culture techniques are also known to be free of viruses and other diseases; thus, are all with high survival rate in the field.

In Rwanda, University of Rwanda (UR), Rwanda Agriculture Board (RAB), INES-Ruhengeri, FAIM.CO are all among the few organizations that have undertaken the biotechnology programme, and it has been a few years now, but the impact of that program on Rwandan people’s livelihood is still debatable.

“Further, it is mainly because the research that is conducted does not initiate the production of affordable products that can reduce the need of costly agrochemicals and deleterious effects of diseases and weeds thus promoting agricultural productivity,” they said.

Considering the potential benefit that plant biotechnology holds, it should be considered in the framework of the agricultural sector at large perceiving scientific, technical, regulatory, socio-economic and political evolution, they recommended.

It will be very wise to allocate necessary funds for experimentation and research of applicability of modern biotechnology programs: tissue culture, genetic engineering, use of GM crops, use of plant molecular markers especially in developing countries since the demand to apply that technology will always be high, and the future of agriculture will definitely depend on modern plant biotechnology, the study further says.

Janvier Karangwa, the Marketing and Communication Specialist at Rwanda Agriculture and Animal Resources Development Board told Doing Business that , “  in Rwanda, biotechnology is used in breeding, rapid cleaning plant material multiplication via tissue culture technology, diseases diagnosis and surveillance management.”

Will GMOs be adopted in Rwanda?

The reason why farmers in most developed countries have adopted the use of GM crops is because they have seen a very positive income.

According to researchers adopting GM crops will come with a lot of tangible benefits cutting down the number of herbicides, fungicides and other chemicals to control pests.

However, Juliet Kabera, the Director General of Rwanda Environment Management Authority (REMA) recently said that the institution is closely working with Rwanda Agriculture and Animal Resources Development Board (RAB) to ensure that any biotechnology that is used is safe.

“We are the authority to handle biotechnology after Rwanda ratified Cartagena protocol to ensure bio-safety,” she said.

She said that Rwanda has designed a bio-safety strategy to ensure Rwandans are conscious.

“In the strategy we now have a draft of law on biosafety which is going to be discussed in the cabinet and later on in the parliament. We are establishing laboratories and raising awareness to be able to know what we are doing on the market especially when it comes to Genetically Modified Organisms (GMOs),” she said.

According to RAB, to fight Potato late blight disease, a new variety of Irish potatoes, produced through biotechnology, which will not require using agro-chemicals could soon be imported and tried in Rwanda.

According to researchers, in order to revolutionise the plant biotechnology industry in Rwanda and Africa as a whole, initiatives to build strong long-term policies to promote this technology starting by training individuals and increasing the scientific capacities and infrastructures that specialise in plant biotechnology should be recommended.

“Rwandan government should reinforce its current agricultural policies: documenting the available plant breeds by increasing the number of community gene bank and installing proper research units in the whole country, renovating and improving the current plant breeding techniques and training the new generation of plant breeders, limiting the use of agrochemicals to protect the environment,” they suggest.

Open Forum on Agricultural Biotechnology (OFAB) was recently launched in Rwanda with the aim of promoting biotechnology.

OFAB, a project of African Agricultural Technology Foundation (AATF), is funded by the Bill and Melinda Gates Foundation.

According to officials, the experiences and practices in the field of biotechnology will be shared in the countries of Kenya, Uganda, Tanzania, Ethiopia, Ghana, Burkina Faso, Rwanda and Nigeria.

OFAB is a partnership platform in Africa that contributes to creation of an enabling environment for biotechnology research, development, and deployment for the benefit of smallholder farmers in Africa.

It aims to contribute to informing policy decision making processes on matters of agricultural biotechnology through the provision of factual, well researched and scientific information.

editor@newtimesrwanda.com

Read Full Post »

17 May 2022/

Ellen Phiddian

Gene-editing cockroaches with CRISPR-Cas9 – and maybe other insects

New technique a lab time-saver for world of insect experimentation.

cartoon of syringe injected into big cockroach, with arrow pointing to three baby cockroaches, one of which has white eyes

The new genetic modification method involves directly injecting CRISPR materials into cockroaches, with some of their offspring then carrying the mutation (in this case, a change in eye pigment). Credit: Shirai et al., Cell Reports Methods

MORE ON:

GENETIC MODIFICATION

Researchers have found a simpler way to genetically modify cockroaches with CRISPR-Cas9, considerably reducing the time needed to conduct insect research.

CRISPR-Cas9 is a molecule first discovered in bacteria, which has made genetic modification a much faster and more efficient process.

The new technique, called direct parental CRISPR, or DIPA-CRISPR, allows researchers to avoid having to microinject CRISPR materials into insect embryos. Apparently, this is a major inconvenience in the genetically modified insect world, and it doesn’t work for every insect. In fact, cockroaches’ odd reproductive systems prevent them from being genetically modified with embryo microinjections.

Instead, DIPA-CRISPR works by a female cockroach being injected with the relevant CRISPR tools – meaning that some of her offspring carry the induced genetic modifications.

“In a sense, insect researchers have been freed from the annoyance of egg injections,” says Takaaki Daimon, a researcher at Kyoto University, Japan, and senior author of a paper describing the research, which has been published in Cell Reports Methods.

“We can now edit insect genomes more freely and at will. In principle, this method should work for more than 90% of insect species.”

The researchers used commercially available Cas9 ribonucleoproteins (the proteins that induce genetic modification) to test this method.

They injected these ribonucleoproteins into the haemocoels (main body cavity) of two different insects: the German cockroach (Blattella germanica), and the red flour beetle (Tribolium castaneum).

They then investigated the offspring of these insects, to see whether their genetic modification had worked.

The Cas9 proteins that were designed to “knockout” genes (that is, remove a gene from a genome) were very successful, by genetic modification standards. More than 50% of the red flour beetle offspring, and 22% of the cockroach offspring, lacked the pigment-creating gene that the researchers wanted to remove.

“Knockin” modifications (introducing a new gene into the genome) were less successful, with only very low efficiency.


Read more: Resilience is in the genes for cockroach


The technique depends on the reproductive stage the adult females are at, and a strong understanding of the insect’s ovary development. Unfortunately, fruit flies – which are a model organism for lots of genetic research – won’t respond to this technique.

Nevertheless, the researchers say that DIPA-CRISPR will reduce the expense, and timeframes, of a lot of insect research.

“By improving the DIPA-CRISPR method and making it even more efficient and versatile, we may be able to enable genome editing in almost all of the more than 1.5 million species of insects, opening up a future in which we can fully utilise the amazing biological functions of insects,” says Daimon.

“In principle, it may be also possible that other arthropods could be genome edited using a similar approach. These include agricultural and medical pests such as mites and ticks, and important fishery resources such as shrimp and crabs.”


Interested in having science explained? Listen to our new podcast.https://omny.fm/shows/huh-science-explained/playlists/podcast/embed?%20style=cover&autoplay=0&list=0

Originally published by Cosmos as Gene-editing cockroaches with CRISPR-Cas9 – and maybe other insectsEllen PhiddianEllen Phiddian is a science journalist at Cosmos. She has a BSc (Honours) in chemistry and science communication, and an MSc in science communication, both from the Australian National University.

Read Full Post »

‘Almost all crops today have been changed from their original form’: National Academies of Sciences says GMOs just most recent form of food genetic modification

National Academies of Sciences Engineering and Medicine | May 3, 2022

Print Friendly, PDF & Email
Credit: Mary Evans Picture Library
Credit: Mary Evans Picture Library

This article or excerpt is included in the GLP’s daily curated selection of ideologically diverse news, opinion and analysis of biotechnology innovation. It is posted under Fair Use guidelines.

People have been changing plants for thousands of years. Humans started farming more than 10,000 years. Agriculture began in Mesopotamia, in the region we now call the Middle East. At first, people took the seeds of wild plants and put them in places where they would grow well and be easier to harvest. Soon, people noticed that some plants performed better than others, and they kept the seeds of the best ones to plant the next year. As people did this year after year, farmed crops slowly became different from their wild relatives. This process is often called domestication.

The choices early farmers made about which seeds to plant were driven by many of the same factors that influence choices made about seeds today. Many wild plants naturally produce toxins that act as a defense against pests, and people made seed choices so that many crops today are tasty, nutritious, and easy to digest. Farmers want plants that are easier to harvest and produce more fruit, vegetables, grains, fiber, or oil. They also look for plants that can withstand disease, pests, flooding, drought and other problems.

Over thousands of years, people grew many types of crops, brought them to new areas of the world, and continued to change the plants to suit their needs.

Methods for changing plants expanded as science and technology advanced

In the 1800s, Gregor Mendel and others made discoveries about how parents pass traits to their offspring. This new understanding helped people produce new varieties of plants with useful qualities using selective breeding. In this method, two plants with desirable traits are deliberately mated so the next generation of plants will have these characteristics. As experiments in plant breeding continued, people learned how to breed plants together to create hybrids with certain traits. For example, hybrid types of corn, wheat, and rice were bred that produce more grain per plant and that can be grown in narrow rows in a field. Farmers are then able to harvest more grain using the same amount of land.

In the 1930s, people found that applying radiation or chemicals to a seed caused plants to have traits different from their parents. This is because radiation and certain chemicals can cause changes in the genes of plants, which determine what characteristics the plant will have. The seeds with the most useful traits caused by these genetic changes were then grown and used to breed new varieties of crops. Today, hundreds of varieties of more than 100 crops that we grow and eat were developed using these means, including many types of rice, wheat, and barley.

With the discovery of the structure of DNA in 1953 and other advances in understanding how genes work, scientists began to explore other ways to improve plants. By the 1980s, scientists were able to identify specific bits of DNA called genetic markers that are associated with particular traits. By knowing what genetic markers to look for, marker assisted breeding speeds up the breeding process by allowing scientists to know whether a plant will have the desired trait even before it is grown.

For most of history, improving plants depended on choosing two parent plants of similar types or varieties that are able to breed with each other. In the 1980s, scientists also invented ways to create new traits by combining the genes of different kinds of plants, as well as DNA from other organisms, including bacteria and viruses. These new plants carry “recombinant” DNA and are sometimes referred to as Genetically engineeredtransgenicgenetically modified organisms (GMOs), or bioengineered. More than a dozen food crops with traits introduced through recombinant DNA are grown in the world today.

In the 2010s, gene editing was developed, allowing scientists to directly change a plant’s genes without having to use the DNA from another plant or other organism. A few such crops are grown today, including gene-edited soybeans that produce soybean oil with a healthier balance of fats.

Almost all crops today have been changed from their original form

Since people have been farming for such a long time, nearly all crops grown today have been genetically improved, whether through domestication, selective breeding, hybridization, radiation or chemicals, or changes made directly to plant genes by humans.

Scientists and growers continue to improve methods for making crops with certain traits. For example, people are working to create crops that can better withstand droughts, which are becoming more common as the climate changes.

A version of this article was posted at National Academies of Sciences, Engineering, and Medicine and is used here with permission. Find the National Academies of Sciences on Twitter @theNASciences

Read Full Post »

Older Posts »