Feeds:
Posts
Comments

Archive for the ‘Host plant resistance’ Category

Insect-resistant GMO cowpea trials wow Nigerian farmers with jumping yields and lower costs — but other farmers remain hesitant

Abdulkareem MojeedEbuka Onyeji | Premium Times | May 4, 2022

Print Friendly, PDF & Email
Credit: IFAD
Credit: IFAD

This article or excerpt is included in the GLP’s daily curated selection of ideologically diverse news, opinion and analysis of biotechnology innovation. It is posted under Fair Use guidelines.

Last August, the farmers were given cowpea seeds genetically modified (GM) to resist the destructive pod-borer insect pest and improve yield to experiment on their farms.

Mr Osondu said his farm became the centre of attraction a few weeks after he planted the cowpea. “As you can see, I planted the beans at a roadside where everybody can see it,” the farmer said. He was quick to point out the sharp contrast between the traditional cowpea the farmers are used to and the new variety.

“I used to spray insecticides at least five times on the normal cowpea yet the crop will still be eaten by insects before harvest. But this one I sprayed only once, and it did very well. I harvested about two months after planting and the yield was impressive.

“They gave me half a cup and I harvested three painter buckets. If I planted the same amount of normal beans, I would have harvested only one painter,” the farmer said.

he latest news and policy debates on agricultural biotech and biomedicine? Subscribe to our newsletter.

Poor awareness of GMO among not just lay people but even many informed Nigerians fuels scepticism, which is making it difficult for Nigerians to make informed decisions on whether to accept or reject GM cowpea in Nigeria, our findings revealed.

This is an excerpt. Read the original post here

Read Full Post »

How plant breeding innovations are helping feed a hungry world

Mikaela Waldbauer | Sustainable Agricultural Innovation & Food (SAIFood) | April 29, 2022

Print Friendly, PDF & Email
Rice can survive submerged, but not for long. Plant breeding technology is getting the crop ready for climate change floods. Credit: Sasin Tipchai
Rice can survive submerged, but not for long. Plant breeding technology is getting the crop ready for climate change floods. Credit: Sasin Tipchai

This article or excerpt is included in the GLP’s daily curated selection of ideologically diverse news, opinion and analysis of biotechnology innovation. It is posted under Fair Use guidelines.

As of 2019, nearly 26% of the globe’s population “experienced hunger or did not have regular” access to safe and nutritious food (FAO, 2020). With increasing global populations and a changing climate, this number is estimated to surpass 840 million by 2030 (UN, n.d.).

Plant breeding technologies have impacted global food security in positive ways. One of the major ways genetically modified (GM) crops can influence global food security is by adapting plants to the changing climate. Plant breeding can be utilized to develop crop plant varieties with a higher tolerance to environmental stresses such as heat, drought, and flooded conditions.

For example, a rice variety developed by plant breeders in Bangladesh has been shown to survive flooded conditions for as long as two weeks, and common beans have been used to develop both heat and cold resistant varieties capable of being grown in both the Durango region of Mexico and the high altitudes of Columbia and Peru (Global Partnership Initiative for Plant Breeding Capacity Building [GIPD], n.d.).

The climate is changing at a faster rate than crop plants can adapt, and few solutions to this issue exist. One key solution is the improvement of crop plant varieties through new plant breeding innovations. The evidence is clear that GM crop varieties are superior in performance under harsh conditions (GIPD, n.d.). However, these solutions are not utilized to their fullest extent due to intense scrutiny and rejection.

Importance of nutritious diets

With an increase in the global population, food insecurity is predicted to rise. To compensate for population growth, food production must increase at a faster rate than it currently is today. Research shows plant breeding can address this concern. According to a 22-year study on the economic impact of GM crops, global production has increased substantially because of yield increased from GM crops (Brookes & Barfoot, 2020). Urbanization is reducing the area of arable land available for food production. Without the use of additional land to grow more food, an increase in yields on the land currently cultivated will be solely relied on to increase production. GM crops are one tool that can be used in improving production levels of food, when compared to conventional crops, by increasing yields.

Considering smallholder farmers make up 50% of the world’s undernourished (Qaim & Kouser, 2013), increasing the profit of smallholder farmers should have a net decrease in food insecurity in developing countries. Smallholder profits have also increased with the adoption of GM crops. Studies have found that GM crop varieties have improved yields substantially when compared to conventional crops. Most notably, the highest improvements in crop yield have been observed in developing countries, where food insecurity is the highest (Brookes & Barfoot, 2014). Since the study began in 1996, there has been a $225 billion increase in farmer income, as of 2018. A reduction in pesticide cost and improvement in yields is responsible for increased profit, primarily through insect-resistant varieties such as the newly commercialized Bt cowpea in Nigeria. An increase in farmer profit through GM crop cultivation is clear, especially in low-income countries. Yet, the very regions that could benefit most from these crops are the ones that reject them. More widespread commercialization of GM crop varieties has the impact to increase farmer profit, specifically smallholder profit, which makes up a generous portion of the world’s undernourished.

Micronutrient deficiency affects over 50% of the global population (Nestel et al., 2006). Large consumption of staple food products in developing countries such as rice, wheat, and corn with little variety can lead to nutritional deficiencies including deficiencies in vitamin A, iron, zinc, among others. Recently, a GM rice crop biofortified with beta-carotene (a vitamin A precursor) was approved for cultivation in the Philippines, called Golden Rice. Golden Rice has the potential to diminish the prevalence of micronutrient-related malnutrition, vitamin A deficiency. Golden Rice can combat vitamin A deficiency in high rice-consuming regions by allowing the consumption of beta-carotene without changing the taste or agronomic qualities of the rice while remaining at a comparable cost to conventional rice (IRRI, n.d.). Evidence does depict the capabilities of biofortification in a deficient diet.

Looking forward

Of the opposing views brought forth by ant-GMO advocates, most are refutable. Sifting through the scientific literature, is it suggested that while GM crops may offer a net positive impact on the state of global food security, they are not a panacea to the enormous problem of global food insecurity. Rather, GM crops can be viewed as one vital tool assisting in the mitigation of global food insecurity.

Mikaela Waldbauer is an Agronomy student at University of Saskatchewan interested in food security and plant breeding. Follow Mikaela on Twitter @Mikaela_Marion

A version of this article was posted at Saifood and is used here with permission. You can check out Saifood on Twitter @SAIFood_blog

Read Full Post »

Submission

Newly Discovered Protein in Fungus Bypasses Plant Defenses

USDA-ARS
https://content.govdelivery.com/accounts/USDAARS/bulletins/314a8e4




ARS News ServiceSunflower plant infected with Sclerotinia head rot.
A newly discovered protein helps the fungus that causes white mold stem rot in sunflowers and more than 600 other plant species bypass the plants’ defenses. Newly Discovered Protein in Fungus Bypasses Plant Defenses For media inquiries contact: Kim Kaplan, 301-588-5314 Pullman, Wash., April 25, 2022

A protein that allows the fungus that causes white mold stem rot in more than 600 plant species to overcome plant defenses has been identified by a team of U.S. Department of Agriculture Agricultural Research Service and Washington State University scientists.Knowledge of this protein, called SsPINE1, could help researchers develop new, more precise system of control measures for the Sclerotinia sclerotiorum fungus, which attacks potatoes, soybeans, sunflowers, peas, lentils, canola, and many other broad leaf crops. The damage can add up to billions of dollars in a year of bad outbreaks.S. sclerotiorum fungi cause plants to rot and die by secreting chemicals called polygalacturonases (PG), which break down the plant’s cell walls. Plants evolved a way to protect themselves by producing a protein that stops or inhibits the fungus’ PG, labeled PGIP, which was discovered in 1971. Since then, scientists have known that some fungal pathogens have a way to overcome plant’s PGIP. But they had not been able to identify it.”What you have is essentially a continuous arms race between fungal pathogens and their plant hosts, an intense battle of attack, counterattack and counter-counterattack in which each is constantly developing and shifting its chemical tactics in order to bypass or overcome the other’s defenses,” said research plant pathologist Weidong Chen with the ARS Grain Legume Genetics Physiology Research Unit in Pullman, Washington, and leader of the study just published in Nature Communications.The key to identifying SsPINE1 was looking outside the fungi cells, according to Chen.”We found it by looking at the materials excreted by the fungus,” he said. “And there it was. When we found this protein, SsPINE1, which interacted with PGIP, it made sense.”Then to prove that the protein SsPINE1 was what allowed Sclerotinia to bypass plants’ PGIP, Chen and his colleagues deleted the protein in the fungus in the lab, which dramatically reduced its impact.”I got goosebumps when we found this protein,” said Kiwamu Tanaka, an associate professor in Washington State University’s Department of Plant Pathology and a co-author on the paper. “It answered all these questions scientists have had for the last 50 years: Why these fungi always overcome plant defenses? Why do they have such a broad host range, and why are they so successful?”The discovery of SsPINE1 has opened new avenues to investigate for controlling white mold stem rot pathogens, including possibly even more effective, more targeted breeding to make plants naturally resistant to sclerotinia diseases. And the team has showed that other related fungal pathogens use this counter-strategy, which only serves to make this discovery even more important.This research is part of the National Sclerotinia Initiative, a multiorganization effort that ARS created to counterattack S. sclerotiorum because the fungus does so much damage around the world.The research team also included scientists from USDA-ARS, WSU, Northwestern A&F University in Shaanxi, China, Wuhan Polytechnic University in Wuhan, China and Huazhong Agricultural University in Wuhan.The Agricultural Research Service is the U.S. Department of Agriculture’s chief scientific in-house research agency. Daily, ARS focuses on solutions to agricultural problems affecting America. Each dollar invested in agricultural research results in $17 of economic impact.
Interested in reading more about ARS research? Visit our news archiveU.S. DEPARTMENT OF AGRICULTURE
Agricultural Research Service

Read Full Post »

BCPC’s GM/Biotech Crops Report – April 2022

5th April 2022

  • GM/Biotech Crops Monthly Reports (BELOW) form part of BCPC’s free three-tier Biotech Crops Info service.
  • This service also includes a weekly round-up of news from around the globe – see BCPC Newslink GM Crops section.
  • Plus – Free access database on over 300 GM/biotech products covering 23 crops in the global market visit BCPC’s GM/Biotech Crops Manual – Register here for free access.
  • Already registered? Click here

GM/Biotech Crops Monthly Report April 2022

Lettuce in space

Astronauts that spend a long time in space can suffer from a loss of bone density due to the reduced gravity but now a team at the University of California have developed a genetically-modified lettuce that produces a drug that can offset this loss and that can be grown in space to provide the astronauts with fresh green leaves to eat. Pic: Mel Edwards. Full Story.

Antibiotics on crops

While Europe bans neonicotinoids to ensure no harmful effects to bees, America is spraying apple and pear orchards with streptomycin to control the bacterial disease fire blight. A study has shown that bees exposed to the streptomycin are less active and collect less pollen than those that are not exposed to the antibiotic.
Full Story.

An elixir of youth

Some people try blood transfusions from young people to recapture that youthful zest for life and now a study has produced some evidence supporting that hope. Young mice blood contains packets of chemicals (extracellular vesicles) budded off from dividing cells that, when injected in to old mice, restores grip strength, stamina and motor coordination. Sadly the effect wears off after a couple of months but another injection can restore it.
Full story

BT maize resistant to stem borer attack

An evaluation of BT maize in Uganda has confirmed a reduction of leaf damage and stem attack that has led to yield increases of 30 – 80%.
Full Story.

Salt-tolerant cotton

A relative of Arabidopsis has yielded a trait that can be used to confer salt tolerance to cotton which could allow the crop to be grown on more land but could also boost yields in areas where it is already grown.
Full Story

Herbicide-tolerant tomatoes

Scientists in Korea have used gene editing to alter three enzymes in tomatoes. The benefits of changes to PDS and EPSPS enzymes are unclear but the changes to the ALS enzyme can confer tolerance of ALS herbicides similar to the naturally-occurring tolerance recently introduced in sugar beet.
Full Story

Potato genome decoded

Scientists at the Max Planck Institute and the Ludwig Maximillian University have decoded the entire genome of potatoes and this knowledge is to be used to develop improved varieties for future cropping. The following link takes you to the German text which can be translated by computer.
Full Story

Gene expression imbalance boosts wheat yields

Researchers at Kansas University have found that varying the expression of various genes in wheat can affect the grain size and final yields. This knowledge can possibly be used to optimise yields of new varieties.
Full Story

Control of Fall Army Worm

Pilot studies in Brazil have shown that release of Oxitec’s ‘Friendly’ male army worms can reduce the populations of army worms due to the males carrying a male only trait and that this reduction will help to protect the Bt maize that is grown there from resistance developing in the wild population. It is very target specific and has no effect on other species such as bees.
Full Story

USDA approved gene-edited cattle

The USDA has decided that gene-edited beef cattle that have shorter hair than unedited cattle pose no safety concerns and can be marketed without waiting for a specific approval:
Full Story

Europe approves transgenic maize with stacked traits

The EFSA finds no safety concerns in GM maize with stacked traits for insect resistance and tolerance of glyphosate and glufosinate. This permits the import of these crops but it still does not allow them to be grown in Europe.
Full Story

Stripe rust resistance in wheat

An international team has identified the specific gene that confers resistance to stripe rust in the African bread wheat variety ‘Kariega’ and now this trait can be transferred to other varieties.
Full Story

Gene-silencing for weed control

Colorado University has developed a spray that contains antisense oligonucleotides that penetrate the leaves of the weed Palmer amaranth and silence essential genes in the weed. Palmer amaranth has developed resistance to a number of herbicides but this spray is specific to this weed and has no effect on the crop or non-target organisms.
Full Story

Nutritional Impact of regenerative farming

The University of Washington has compared crops grown on land under regenerative farming management with crops grown on adjacent conventionally farmed land and has shown that the regenerative farming crops have higher levels of vitamins, minerals and other phytochemicals. They don’t give any comparison of the yields achieved though and perhaps the higher levels of vitamins etc are simply due to them being distributed through lower yielding crops.
Full Story

Transgenic sugarcane

Sugarcane with overexpressed sucrose-phosphate synthase has been trialled in Indonesia has shown increased tiller number, height and yield than conventional varieties without affecting bacterial diversity or gene horizontal flow in the soil.
Full Story

Potato virus Y resistance

Researchers in Iran have used gene-silencing techniques to develop potatoes that exhibit resistance to potato Y virus.
Full Story

GM barley trials in the UK

Fertiliser prices have gone through the roof and NIAB in conjunction with Cambridge University at the Crop Science Centre are to trial gene modified and gene edited lines of barley to see if they can improve the nitrogen and phosphorus uptake of the plants and make them less reliant on applied fertilisers. If successful on barley, it could be rolled out to other crops.
Full Story

Palm oil replacement

Palm oil is widely used in many products but the proliferation of palm plantations is responsible for a lot of habitat loss throughout the world. Now a team at Nanyang technological University in Singapore have developed a technique for producing the oil from common microalgae.
Full Story

Corn borer resistant maize

Zhejiang University in China has developed a genetically modified maize that has insect resistant traits and a 5 year study has shown it can give up to 96% reduction in corn borer damage and a 6 – 10% yield increase over conventional varieties.
Full Story

THE LATEST ADDITIONS TO THE  GM/BIOTECH DATABASE ARE:

The latest approvals of biotech crops to report this month:

• GMB151 – soybean tolerant of isoxaflutole herbicide approved for food use in Canada and for environmental use in America

FOR INSTANT ACCESS TO GM BIOTECH MANUAL CLICK HERE (Registration required)

Already Registered? Click here to access

Read Full Post »

New initiative to confront taro leaf blight in Nigeria

By Innovation Lab February 21, 2022 No Comments

Researchers in Nigeria are on a mission to upend taro leaf blight (TLB) epidemics across West Africa. The infectious plant disease attacks the leaves of taro, which has historically reduced taro yields by up to 50% and leaf yield losses of up to 95%.

Taro, also referred to as cocoyam, is a staple root crop that is essential for food security in the region, providing critical sources of fiber and micronutrients. The new project based at the Feed the Future Innovation Lab for Crop Improvement will use genetic analyses to better understand TLB and develop varieties that can stand up to the plant pathogen.

Led by Lydia Jiwuba at the National Root Crops Research Institute (NRCRI), the study will be the first of its kind to follow a single marker approach to analyze the genetic basis of TLB resistance and corm quality in a biparental mapping population.

“It takes constant vigilance from scientists to protect food crops from pathogens like taro leaf blight.”

Lydia Jiwuba, a senior research scientist at NRCRI and principal investigator for the taro leaf blight in Nigeria project

“We are thrilled to collaborate with ILCI on this project and look forward to enhancing, upgrading and strengthening the cocoyam program in NRCRI for modern breeding.”

ILCI’s research program sought to expand its work on roots, tubers and banana, in addition to its existing programs on sorghum, bean, sweet potato, cowpea and millets in Costa Rica, Haiti, Malawi, Senegal and Uganda, according to Stephen Kresovich, director of the Innovation Lab for Crop Improvement, who also serves as professor in Cornell University’s School of Integrative Plant Science, and the Robert and Lois Coker Trustees Chair of Genetics in the Department of Plant and Environmental Sciences at Clemson University.

“Scientists in Africa are poised to transform how plant breeders confront taro leaf blight in Nigeria and beyond,” said Kresovich.

“This collaboration will strengthen NRCRI’s taro program in ways that ultimately benefit the farmers and consumers of West Africa.”

Stephen Kresovich

In addition to its research on TLB epidemics, the project will consider the social context into which the taro market is situated. The research will incorporate women’s trait preferences, recognizing that Nigerian women contribute over 60% of the labor force in food production and processing. The research team also seeks to optimize nutrition and engage young farmers in the taro value chain, according to Jiwuba.

Feed the Future is America’s initiative to combat global hunger and poverty. It brings partners together to help some of the world’s poorest countries harness the power of agriculture and entrepreneurship to jumpstart their economies and create new opportunities. For more information, visit feedthefuture.gov.

Read Full Post »

New Sorghum Variety Will Help Farmers Increase Sorghum Yields

twitter sharing button
facebook sharing button
email sharing button

Benjamin Kohl, Ph.D.

Feb 02, 2022

Purdue University professor, Dr. Tesfaye Mengiste, looks at sorghum infected with anthracnose. Mengiste led a team of researchers who identified a single gene that confers broad resistance to the fungal disease.
Purdue University professor, Dr. Tesfaye Mengiste, looks at sorghum infected with anthracnose. Mengiste led a team of researchers who identified a single gene that confers broad resistance to the fungal disease. Photo Credit: Purdue University

Feed the Future Innovation Lab for Collaborative Research on Sorghum and Millet (SMIL) supports research that provides natural resistance to pathogens and pests in Ethiopian farm fields

Scientists with SMIL have developed a sorghum variety that provides natural resistance to pathogens and pests that have crippled the crop in humid, lowland areas of western Ethiopia.

Their research is reported in the January 9 issue of The Plant Cell, a journal of the American Society of Plant Biologists.

Dr. Timothy Dalton, director of SMIL — based at Kansas State University — said the researchers’ work will “serve the broader sorghum development community and is a flagship global good, public characteristic of the U.S. land grant mission.”

The SMIL, led by Dalton, funded work in Ethiopia and West Africa to map genes and explore more than 2,000 pieces of germplasm in numerous field trials spanning several years.

“The new sorghum variety, called Merera, has multiple benefits, including resistance to pathogens and birds, and it yields better than current varieties that Ethiopian farmers have,” said Dr. Tesfaye Mengiste, a professor of botany and plant pathology at Purdue University, and the principal investigator for the research.

Mengiste said Merera has shown resistance to Anthracnose, a devastating fungal disease that attacks all parts of the plant — leaves, stalk and head — leaving almost nothing to be used for food (sorghum’s primary use in Africa), biofuels or animal feed (the primary use of sorghum in the United States).

“With these improved traits and yield potential, it can mean a better livelihood for (farmers),” Mengiste said.

A newly discovered gene, named Anthracnose Resistance Gene1, or ARG1, is unique, according to Mengiste.

“Although some natural resistance to fungal disease was known in sorghum, genes that confer widespread resistance have not been identified,” he said. “It is remarkable that a single gene leads to resistance across a broad spectrum of fungi and multiple strains of the Anthracnose fungus.”

Mengiste cited recent results with Merera that indicate up to a 43% increase in sorghum yields, which has led to increased income for smallholder farmers.

In 2013, USAID invested $13.7 million to establish the SMIL at Kansas State University. The lab’s primary focus is to improve the productivity, disease resistance, agronomy and economics of sorghum and millet in six partner countries.

In 2018, USAID renewed its commitment to SMIL, awarding $14 million over five years to continue the project’s work.

USAID funds several Feed the Future Innovation Labs across the country to harness the capacity of U.S. land grant institutions, other universities and the private sector to improve food security globally.

The sorghum variety recently developed for Ethiopia — while directly benefitting farmers in that country — is much like many other Feed the Future projects that aim to build knowledge to help farmers throughout the world, including the United States.

“Through this collaborative research supported by SMIL and the funding through USAID, we will continue to explore the rich Ethiopian germplasm to come up with the next resilient and high-yielding varieties,” Mengiste said. “With better leveraging of recent genetic technologies, we will expedite the development of the new generation of varieties or those in the pipeline.”

More information about SMIL, please visit https://smil.k-state.edu.

Read Full Post »

2021 Phytophthora and Bacterial leaf spot bell pepper variety trial reports

Phytophthora blight caused by Phytophthora capsici is one of the most economically important diseases in pepper, tomato, and cucurbit production in New Jersey. The pathogen was first identified in a pepper field in southern New Jersey in 1971. Each year for the past three decades Rutgers has evaluated new bell pepper cultivars and breeding lines for their resistance to P. capsici in field trials at the Rutgers Agricultural Research and Extension Center (RAREC) near Bridgeton, New Jersey, and in some years, at research trials on farms near Vineland, NJ. The pathogen, an oomycete – ‘water mold’ is favored by warm weather and wet soils during the production season and can survive between seasons in the soil as oospores. Once found in a field, the pathogen can establish itself, and be very difficult to control even with the use of fungicides because of resistance development.

Fortunately, in bell pepper, highly resistant or intermediate resistant cultivars to Phytophthora blight have been commercially-available for over 20 years now and have been used extensively by bell pepper growers throughout the state. Each year, Rutgers also evaluates each cultivar for their fruit quality characteristics (e.g., color, wall thickness, number of lobes, and development of ‘silvering’) to make sure they meet the needs of growers. Unfortunately, phytophthora resistant cultivars such as ‘Paladin’ which have been used extensively in southern New Jersey for the past 20 years appears to be breaking down. Because of increasing reports of bacterial leaf spot and copper resistance in recent years, bell peppers grown in NJ at some point will need to consider growing those cultivars with X10R resistance and phytophthora blight resistance. Importantly, for organic bell pepper growers, if you have not already done so, you should be evaluating these new lines to see if they meet your needs. The easiest way to mitigate both diseases are to start with genetic resistance. Below are the bell pepper variety and bacterial leaf spot reports for 2021.

Click to access Rutgers-Pepper-Phytophthora-Blight-Final-Report-2021.pdf

Click to access Rutgers-Bacterial-Leaf-Spot-Final-Report-2021.pdf

For more information on recommended bell pepper cultivars please visit the Pepper Section in the 2022/2023 Mid-Atlantic Commercial Vegetable Productions Recommendations Guide.

For more information: 
Rutgers University
State University of New Jersey 

www.rutgers.edu

Read Full Post »

New Sorghum Variety Will Help Farmers Increase Sorghum Yields and has Resistance to Pathogens and Birds

AGRILINKS

twitter sharing button
facebook sharing button
email sharing button

Benjamin Kohl, Ph.D.

Feb 02, 2022

Purdue University professor, Dr. Tesfaye Mengiste, looks at sorghum infected with anthracnose. Mengiste led a team of researchers who identified a single gene that confers broad resistance to the fungal disease.
Purdue University professor, Dr. Tesfaye Mengiste, looks at sorghum infected with anthracnose. Mengiste led a team of researchers who identified a single gene that confers broad resistance to the fungal disease. Photo Credit: Purdue University

Feed the Future Innovation Lab for Collaborative Research on Sorghum and Millet (SMIL) supports research that provides natural resistance to pathogens and pests in Ethiopian farm fields

Scientists with SMIL have developed a sorghum variety that provides natural resistance to pathogens and pests that have crippled the crop in humid, lowland areas of western Ethiopia.

Their research is reported in the January 9 issue of The Plant Cell, a journal of the American Society of Plant Biologists.

Dr. Timothy Dalton, director of SMIL — based at Kansas State University — said the researchers’ work will “serve the broader sorghum development community and is a flagship global good, public characteristic of the U.S. land grant mission.”

The SMIL, led by Dalton, funded work in Ethiopia and West Africa to map genes and explore more than 2,000 pieces of germplasm in numerous field trials spanning several years.

“The new sorghum variety, called Merera, has multiple benefits, including resistance to pathogens and birds, and it yields better than current varieties that Ethiopian farmers have,” said Dr. Tesfaye Mengiste, a professor of botany and plant pathology at Purdue University, and the principal investigator for the research.

Mengiste said Merera has shown resistance to Anthracnose, a devastating fungal disease that attacks all parts of the plant — leaves, stalk and head — leaving almost nothing to be used for food (sorghum’s primary use in Africa), biofuels or animal feed (the primary use of sorghum in the United States).

“With these improved traits and yield potential, it can mean a better livelihood for (farmers),” Mengiste said.

A newly discovered gene, named Anthracnose Resistance Gene1, or ARG1, is unique, according to Mengiste.

“Although some natural resistance to fungal disease was known in sorghum, genes that confer widespread resistance have not been identified,” he said. “It is remarkable that a single gene leads to resistance across a broad spectrum of fungi and multiple strains of the Anthracnose fungus.”

Mengiste cited recent results with Merera that indicate up to a 43% increase in sorghum yields, which has led to increased income for smallholder farmers.

In 2013, USAID invested $13.7 million to establish the SMIL at Kansas State University. The lab’s primary focus is to improve the productivity, disease resistance, agronomy and economics of sorghum and millet in six partner countries.

In 2018, USAID renewed its commitment to SMIL, awarding $14 million over five years to continue the project’s work.

USAID funds several Feed the Future Innovation Labs across the country to harness the capacity of U.S. land grant institutions, other universities and the private sector to improve food security globally.

The sorghum variety recently developed for Ethiopia — while directly benefitting farmers in that country — is much like many other Feed the Future projects that aim to build knowledge to help farmers throughout the world, including the United States.

“Through this collaborative research supported by SMIL and the funding through USAID, we will continue to explore the rich Ethiopian germplasm to come up with the next resilient and high-yielding varieties,” Mengiste said. “With better leveraging of recent genetic technologies, we will expedite the development of the new generation of varieties or those in the pipeline.”

More information about SMIL, please visit https://smil.k-state.edu.

Read Full Post »

Scientists decode chemical defense against plant sap-sucking leafhoppers

Date:February 3, 2022 Source: Max Planck Institute for Chemical Ecology Summary: Given the sheer number of potential enemies, plants are resistant to most pests, even if they can cause damage to other plants. Researchers describe a newly discovered mechanism that protects a wild tobacco species from plant sap-sucking leafhoppers. By combining different genetic screening methods with the study of chemical changes in tobacco leaves, they identified a previously unknown defense substance important for the tobacco’s resistance to leafhoppers and characterized the genes for its biosynthesis.Share:

FULL STORY


Plants are at the bottom of the food chain and are continually threatened by pathogens and herbivorous insects. But the vast majority of attackers are unable to cause any damage due to a broadly based plant resistance, also known as non-host resistance. This resistance is permanent and effective. However, the mechanisms that lead to this resistance, particularly to herbivorous pests, are largely unknown. In a new study, researchers at the Max Planck Institute for Chemical Ecology were able to identify a chemical substance responsible for the resistance of Nicotiana attenuata plants to sucking leafhoppers (Empoasca spp.) and the genes needed for its production. “Our research uncovered how native plants use chemical reprogramming to defend themselves against opportunistic leafhoppers in nature,” first author Yuechen Bai says, summarizing the results.

In 2004, scientists at the institute had already discovered in field studies that tobacco plants impaired in their defense-signaling cascade based on the plant hormone jasmonic acid were attacked by leafhoppers, insects that are usually not able to harm tobacco plants with functional defenses. The work proved that, in nature, plants are permanently “tested” by herbivorous insects in order to find out whether they can serve as a food source; however, in most cases the plants are able to defend themselves effectively. Consistent with these findings, another study by the institute showed that leafhoppers colonized the very plants in natural tobacco populations whose jasmonic acid signaling pathway was weaker than in other tobacco plants. “However, at that time, it was still unknown which specific defense mechanisms triggered by jasmonic acid were responsible for resistance to the leafhoppers,” explains Dapeng Li, one of the study leaders.

To answer this question, the scientists crossed 26 genetically different natural parental lines. This population, which the research team had crossed according to a fixed scheme over a total of nine years, was planted out in its natural habitat in Arizona, USA, where it could be attacked by opportunistic leafhoppers. When leafhoppers attacked these plants, the severity of the damage helped identify the genetic basis that made this particular plant a host plant for leafhoppers taking advantage of weak defenses.

The researchers also investigated which chemical changes are elicited in the plants after attack and which genes are activated. They found a new unstable substance, for which they used the abbreviation CPH (caffeoylputrescine-green-leaf-volatile compound), which was responsible for permanent resistance to leafhoppers. Through bioinformatic detective work and by using plants that were specifically modified in certain defense and signal transduction genes, they were able to show which three metabolic pathways were involved in the production of this chemical. Finally, the researchers even succeeded in reconstituting the biosynthetic pathway for the defense substance CPH in two related plants, the field bean Vicia faba and the tomato species Solanum chilense, and demonstrating its efficacy against leafhoppers.

“By combining sophisticated molecular biology and chemical analysis methods, we were able to identify and characterize not only a previously unknown defense substance, but also the genes responsible for its synthesis,” explains Ian Baldwin, and continues: “Our approach can be described as “natural history-guided forward genetics. Natural history and the observation of the feeding behavior of leafhoppers has driven our discovery process. Because when it comes to chemistry, nature remains the mother of invention.”

In further studies, the researchers want to find out how the synthesis of this chemical defense is coordinated in the plant and which other factors and specific regulators are crucial for its production, especially under natural conditions. Leafhoppers of the genus Empoasca, especially the potato leafhopper Empoasca fabae, can cause major crop damage by sucking on the leaves of young plants and transmitting viral diseases. Higher temperatures have led to a threatening spread of these insects. This basic research to control such a pest can provide valuable insights with regard to permanently improved resistance in crops, especially in the context of new demands on agriculture caused by climate change.


Story Source:

Materials provided by Max Planck Institute for Chemical EcologyNote: Content may be edited for style and length.


Journal Reference:

  1. Yuechen Bai, Caiqiong Yang, Rayko Halitschke, Christian Paetz, Danny Kessler, Konrad Burkard, Emmanuel Gaquerel, Ian T. Baldwin, Dapeng Li. Natural history–guided omics reveals plant defensive chemistry against leafhopper pestsScience, 2022; 375 (6580) DOI: 10.1126/science.abm2948

Read Full Post »

Anthracnose-resistant sorghum is a gene away

Courtesy of Purdue University and Tom CampbellTesfaye Mengiste, professor of botany and plant pathology at Purdue University, looks at sorghum infected with anthracnose. Mengiste RESISTANCE: Tesfaye Mengiste, a professor of botany and plant pathology at Purdue University, looks at sorghum infected with anthracnose. Mengiste led a team of researchers of the Feed the Future Innovation Lab for Collaborative Research on Sorghum and Millet (SMIL) that identified a single gene conferring broad resistance to the fungal disease.Kansas State University scientists are working on a sorghum variety with natural resistance to pathogens and pests.

Anthracnose resistance in sorghum is just a gene away. Scientists with the Feed the Future Innovation Lab for Collaborative Research on Sorghum and Millet (SMIL) recently announced they have developed a sorghum variety they say will provide natural resistance to pathogens and pests that have crippled the crop in humid lowland areas of western Ethiopia.

Their research is reported in the Jan. 9 issue of The Plant Cell, a journal of the American Society of Plant Biologists.https://0621facf49cfb5973b607839954903fe.safeframe.googlesyndication.com/safeframe/1-0-38/html/container.htmlJennifer M. LatzkeSorghum

SORGHUM: Farmers could soon have sorghum varieties with built-in anthracnose resistance, which will boost yields.

Timothy Dalton, director of SMIL, based at Kansas State University, says the researchers’ work will “serve the broader sorghum development community and is a flagship global good, public characteristic of the U.S. land-grant mission.

Sorghum map

The K-State lab led by Dalton funded work in Ethiopia and West Africa to map genes and explore more than 2,000 pieces of germplasm in numerous field trials over several years.

“The new variety, called Merera, has multiple benefits, including resistance to pathogens and birds, and it yields better than current varieties that Ethiopian farmers have,” says Tesfaye Mengiste, a professor of botany and plant pathology at Purdue University and the principal investigator for the research.

Mengiste says Merera has shown resistance to anthracnose, a devastating fungal disease that attacks all parts of the plant — leaves, stalk, and head — leaving almost nothing to be used for food, biofuels or animal feed.

“With these improved traits and yield potential, it can mean a better livelihood for [farmers],” Mengiste says.

Discovery

A newly discovered gene named anthracnose resistance gene1, or ARG1, is unique, according to Mengiste.

“Although some natural resistance to fungal disease was known in sorghum, genes that confer widespread resistance have not been identified,” he says. “It is remarkable that a single gene leads to resistance across a broad spectrum of fungi and multiple strains of the anthracnose fungus.”

Mengiste cited recent results with Merera that indicate up to a 43% increase in sorghum yields, which has led to increased income for smallholder farmers.

USAID

In 2013, the U.S. Agency for International Development invested $13.7 million to establish the Feed the Future Innovation Lab for Collaborative Research on Sorghum and Millet at K-State. The lab’s primary focus is to improve the productivity, disease resistance, agronomy and economy of sorghum and millet in six partner countries. In 2018, USAID renewed its commitment to SMIL, awarding $14 million over five years to continue the project’s work.

USAID funds several Feed the Future Innovation Labs across the country to harness the capacity of U.S. land-grant institutions, other universities and the private sector to improve food security globally.

The sorghum variety recently developed for Ethiopia — while directly benefiting farmers in that country — is much like many other Feed the Future projects that aim to build knowledge to help farmers throughout the world, including in the U.S.

“Through this collaborative research supported by SMIL and the funding through USAID, we will continue to explore the rich Ethiopian germplasm to come up with the next resilient and high-yielding varieties,” Mengiste says. “With better leveraging of recent genetic technologies, we will expedite the development of the new generation of varieties or those in the pipeline.”Source: Kansas State Research and Extension is solely responsible for the information provided and is wholly owned by the source. Informa Business Media and all its subsidiaries are not responsible for any of the content contained in this information asset.

Read Full Post »

DECEMBER 20, 2021

Microbe sneaks past tomato defense system, advances evolutionary battle

by Lauren Quinn, University of Illinois at Urbana-Champaign

tomato
Credit: CC0 Public Domain

When we think of evolution, many of us conjure the lineage from ape to man, a series of incremental changes spanning millions of years. But in some species, evolution happens so quickly we can watch it in real time.

That’s the case for Xanthomonas, the organism that causes bacterial leaf spot disease in tomato and pepper plants. Like many microbes with short generation times, it can evolve at lightning speed to acquire beneficial traits, such as the ability to elude its host’s defense system.

New research from the University of Illinois shows one Xanthomonas species, X. euvesicatoria (Xe), has evolved to avoid detection by the immune system of tomato plants.

“It’s part of the evolutionary warfare between plants and pathogens, where the plant has some defense trait and then some portion of the pathogen population evolves to escape it. The plant has to develop or acquire a new defense trait, but the process is much slower in plants compared to microbes. This study is a great example of that ongoing battle in progress. It tells us we can’t completely rely on this trait to combat bacterial spot disease caused by Xe,” says Sarah Hind, assistant professor in the Department of Crop Sciences at Illinois and co-author on a pair of recent studies published in Molecular Plant-Microbe Interactions and Physiological and Molecular Plant Pathology.

The tomato defense system keeps tabs on Xanthomonas and other bacteria with immune receptors that chemically detect flagella, the long whip-like tail structures that allow bacteria to move or “swim” through soil and plant tissues. Hind and her colleagues used laboratory and genomic modeling techniques to show one of tomato’s receptors, FLS3, no longer works to detect flagellin proteins in Xe.

Their work shows Xe’s flagellin proteins have changed by just one amino acid, but it’s enough to escape detection by tomato’s FLS3 receptors.

Graduate student and study co-author Maria Malvino says, “It was surprising to see that only one amino acid change was making all the difference. It made us wonder how binding between flagellin and FLS3 could be so dramatically altered.”

The fact that Xe can sneak past tomato’s defenses means farmers can rely even less on inherent disease resistance. Instead, they’ll have to combat the disease in other ways, such as spraying copper-based pesticides.

In some locations, including the Midwest region and in Illinois specifically, Xe isn’t as much of a problem as two other Xanthomonas species, X. perforans and X. gardneri (Xp and Xg). Tomato can still hold its own against these species for the time being, but Hind is concerned Xe will share its evasion strategy.

“X. euvesicatoria [Xe] had been the predominant strain for a long time, but within the last decade or two, it’s become less prominent and has been overtaken by another species, Xp,” she says. “Xp and Xe are really genetically close, and it’s been shown that they can share their genetic material with each other. So it wouldn’t be out of the realm of possibility that that Xe’s evasion strategy could make its way into Xp and provide the same advantage against tomato.”

Hind says the tendency of these bacteria to defeat host defenses through rapid evolution makes breeding for disease resistance difficult in tomato.

“It’s like whack-a-mole for breeders. It takes a long time to release a resistant variety. Often, by the time they go to release a new one, the pathogen population shifts,” Hind says. “And when you add to that the difficulty of maintaining all the desirable traits of a tomato, it’s a tough situation. Again, that leaves us relying on fungicides and copper treatments to keep tomato production profitable here in Illinois.”


Explore furtherScientists find new system in tomato’s defense against bacterial speck disease


More information: Maria Laura Malvino et al, Influence of flagellin polymorphisms, gene regulation, and responsive memory on the motility of Xanthomonas species that cause bacterial spot disease of solanaceous plants, Molecular Plant-Microbe Interactions (2021). DOI: 10.1094/MPMI-08-21-0211-R

Julius Pasion et al, Utilizing Tajima’s D to identify potential microbe-associated molecular patterns in Xanthomonas euvesicatoria and X. perforans, Physiological and Molecular Plant Pathology (2021). DOI: 10.1016/j.pmpp.2021.101744Journal information:Molecular Plant-Microbe InteractionsProvided by University of Illinois at Urbana-Champaign

Read Full Post »

« Newer Posts - Older Posts »