Feeds:
Posts
Comments

Archive for the ‘Herbicides’ Category

Cornell Chronicle

Beneficial soil bacteria face a weed-killing threat from above

Blaine Friedlander

Media Contact

Lindsey Hadlock

As farmers battle in their above-ground war on weeds, they may inadvertently create underground casualties – unintentionally attacking the beneficial bacteria that help crops guard against enemy fungus.

Cornell researchers have found an agricultural conflict: negative consequences of the weed-killing herbicide glyphosate on Pseudomonas, a soil-friendly bacteria.

“Beneficial Pseudomonas in the soil can help crops thrive. They can produce plant-stimulating hormones to promote plant growth and antifungals to defeat problematic fungi – such as Pythium and Fusarium – found in agricultural soil, but previous studies reported that the abundance of beneficial bacteria decreased when the herbicide glyphosate seeps underground,” said Ludmilla Aristilde, assistant professor of biological and environmental engineering. “Our study seeks to understand why this happens.”

Soil bacteria require their proteins – composed of amino acids – and their metabolism to support cellular growth and the production of important metabolites to sustain their underground fight. But glyphosate applied to crops can drain into the soil and disrupt the molecular factories in the bacterial cells in some species, interfering with their metabolic and amino acid machinery.

The new findings show that glyphosate does not target the amino acid production and metabolic gadgetry equally among the Pseudomonas species. For example, when Pseudomonas protegens, a bacteria used as a biocontrol agent for cereal crops, and Pseudomonas fluorescens, used as a fungus biocontrol for fruit trees, were exposed to varying glyphosate concentrations, the researchers noted no ill effects. However, in two species of Pseudomonas putida, used in soil fungus control for corn and other crops, the bacteria had notably stunted growth, said Aristilde, who is a faculty fellow at Cornell’s Atkinson Center for a Sustainable Future.

“Thus, if a farmer is using Pseudomonas fluorescens as a biocontrol, then it is probably okay to use glyphosate,” Aristilde said. “But if the farmer uses Pseudomonas putida to control the fungus in the soil, then glyphosate is more likely to prevent the bacteria from doing its job.”

The study offers molecular details for why glyphosate adverse effects on Pseudomonas are species-specific. “That’s actually good news because – as a society – we will likely not stop using herbicide completely,” said Aristilde. “If that is the case, farmers need to know which beneficial soil biocontrol they’re using can be susceptible. If they’re using a strain that is susceptible and conflicting with their herbicide application, then it is a problem. That’s the bottom line.”

Aristilde will present this research to farmers and agricultural professionals Nov. 14 at the Agriculture, Food & Environmental Systems In-Service training hosted in Ithaca by Cornell Cooperative Extension.

Glyphosate-Induced Specific and Widespread Perturbations in the Metabolome of Soil Pseudomonas Species” was published in Frontiers of Environmental Science in June 2017. Co-authors are Michael Reed ’17; graduate student Rebecca Wilkes; Tracy Youngster, M.S. ’17; Matthew Kukurugya, M.S. ’17; Valerie Katz ’18; and Clayton Sasaki ’18. The research was funded by the U.S. Department of Agriculture’s National Institute of Food and Agriculture; the National Science Foundation; and the Academic Venture Fund at Cornell’s Atkinson Center for a Sustainable Future.


Story Contacts

Blaine Friedlander

Read Full Post »

  • Bloomberg

Pesticide ‘Drifting’ Wreaks Havoc Across U.S. Crops

Photographer: Daniel Acker/Bloomberg

Pesticide ‘Drifting’ Wreaks Havoc Across U.S. Crops

‎August‎ ‎1‎, ‎2017‎ ‎4‎:‎04‎ ‎PM‎ ‎CDT ‎August‎ ‎2‎, ‎2017‎ ‎9‎:‎58‎ ‎AM‎ ‎CDT
  • Missouri, Tennessee, Arkansas have placed curbs on dicamba use
  • At least 2.5 million soy acres are impacted, researcher says

Larry Martin in Illinois says he’s never seen anything like it in his 35 years of farming. Arkansas soybean grower Joe McLemore says he faces the loss of his life savings.

They’re among farmers across the U.S. suffering from a pesticide “drifting” across from neighboring fields onto their crops, leaving behind a trail of damage. Although not a new problem, it’s re-emerged with a vengeance this year. At least 2.5 million acres (1 million hectares) have been damaged in this growing season through mid-July, according to estimates from Kevin Bradley, a professor of plant sciences at the University of Missouri.

Dicamba, the offending herbicide, is produced by seed and crop-chemical giants Monsanto Co., DuPont Co. and BASF SE. It’s been around for decades, but in recent years it gained a new lease of life after the companies developed new dicamba-resistant soybean and cotton seeds, allowing farmers to spray crops later in the growing process.

Dicamba is fine if you’re growing those genetically modified varieties, but not if you’re cultivating others and the chemical wafts over from another farm. The situation is so bad that states including Missouri, Arkansas, and Tennessee have placed restrictions on dicamba use at various times during the summer.

Martin, a third-generation farmer, says an 80-acre soybean field of his has been damaged by dicamba. McLemore, who started out on his own eight years ago, after two decades working on someone else’s farm, says 800 of his 1,026 acres of soybeans have suffered damage.

Stunted, Wrinkled

“I’m not really trying to whine or anything, but it’s my life savings on the line every year,” he said by phone.

 McLemore is among a group of growers that have filed a lawsuit in a federal court in Missouri against BASF, Dupont and Monsanto for compensation. Monsanto spokeswoman Christi Dixon said the suit is without merit, while BASF spokeswoman Odessa Hines said it’s reviewing the claim. Dupont spokeswoman Laura Svec said the company hasn’t seen the lawsuit and so can’t comment on it.

Non-resistant crops are left stunted with wrinkled leaves after coming into contact with dicamba. Frustratingly, there’s no way to gauge the impact of yield until the fall harvest, farmers and researchers say. And it’s not always clear where the chemical might have come from — McLemore says that, in his case, he can’t be sure. That leaves farmers angry but also unsure whether to blame neighbors or herbicide manufacturers, said Aaron Hager, a weed scientist at the University of Illinois.

Farmers planted 20 million acres of dicamba-resistant soybeans and 5 million acres for cotton this year, executives at St. Louis-based Monsanto said in a telephone interview Monday. The company attributes the drifting problem to farmers using illegal, off-label products that are more volatile — and thus more prone to drift — than the latest versions of dicamba. They may also be cleaning or using their spraying equipment incorrectly, or applying dicamba when it’s windy, said Robb Fraley, executive vice president and chief technology officer.

Monsanto, which is being acquired by Germany’s Bayer AG, says employees are out in the fields talking to farmers about the problem. Fraley said farmers want better weed-control tools, such as dicamba product, and that the company will learn lessons from what’s happened this season. “There’s always a few challenges in launching new technology,” he said.

Germany’s BASF referred questions on dicamba to a recording of a July 19 media briefing that cited possible explanations for drifting similar to those outlined by Monsanto.

“This year thousands of growers have used these products properly and successfully meeting their challenges with resistant weeds and productivity,” said Svec at DuPont, which has a supply agreement with Monsanto for the herbicide.

The Environmental Protection Agency says it’s reviewing the situation.

“EPA is very concerned about the recent reports of crop damage related to the use of dicamba in Missouri, Arkansas and other states,” an EPA spokesperson said in an emailed statement. “We are working with the states and the registrants to better understand the issue. We are reviewing the current use restrictions on the labels for these dicamba formulations in light of the incidents that have been reported this year.”

While farmers typically look to federal crop insurance for a myriad of issues, problems with dicamba aren’t covered, according to the Risk Management Agency. Country Financial, a farm insurer, based in Bloomington, Illinois, has seen an increase in the number of dicamba-related inquiries, said company spokeswoman Alexandrea Williams. Martin, the Illinois farmer, says he’s not confident his insurance coverage will pay out.

“This is the craziest thing I’ve ever seen,” he said in a telephone interview. “You know you’re going to have a loss of income.”

— With assistance by Jeff Wilson

Before it’s here, it’s on the Bloomberg Terminal.

layVideouseFullscreen

 Sign Up

Read Full Post »


//html5shiv.googlecode.com/svn/trunk/html5.js

2 PPOresistant pigweeds confirmed in Arkansas Tennessee MidSouth weed specialists have been warning that pigweeds ndash already often resistant to multiple chemistries ndash were in danger of developing resistance to PPO chemistry Those warnings have proven prophetic

The resistance treadmill – how do we get off?

Weed scientists say we can’t keep replacing one resistant herbicide with another.

Forrest Laws | May 12, 2017

How long will it take Palmer amaranth to become resistant to the new formulations of dicamba and 2,4-D that have been approved to be applied over the top of dicamba- and 2,4-D-tolerant cotton and soybeans?

That depends on what growers do to protect the new technologies, according to Bob Scott, a University of Arkansas Extension weed scientist and a speaker at the Pigposium 3 herbicide resistance meeting in Forrest City, Ark.

“If we follow on the resistance path that we’ve been following, and we just come in here and add dicamba to take care of this problem (PPO inhibitor resistance), what do you think is going to happen?” Dr. Scott asked. “We’re just going to add to our list of resistant weeds. We’re going to add dicamba to the growing list of resistance.”

Dr. Scott traced the history of the development of herbicide resistance in Palmer amaranth or pigweed in soybeans, beginning with Prowl and Treflan in the 1980s, the ALS herbicides such as Scepter in the 1990s, glyphosate in the 2000s and

the PPO inhibitor herbicides such as Reflex and Flexstar since 2010.Extension weed scientists at the University of Arkansas have already demonstrated how quickly resistance could develop to dicamba, the active ingredient in the new Xtendimax, Engenia and FeXapan herbicide formulations.

Three generations

“We proved this in a laboratory where this particular population of pigweed in just three selections using sub-lethal doses was not controlled with 16 ounces of dicamba,” Dr. Scott noted. “So we just proved that it can happen if we don’t do something to address herbicide resistance, and we’re not proactive in managing this from Day one.”

He had some words of warning about glufosinate or Liberty, which is one of the few remaining herbicides that can be applied postemergence to control pigweed – in Liberty Link cotton and soybeans.

“The last herbicide that’s put on the field is where the selection pressure occurs,” he said. “I had somebody ask me the other day about planting Liberty Link beans and putting Prefix or Zidua down and using Liberty post. But that last application they’ve been putting out has always been Liberty post, right?

“So they said ‘Is that a good enough reason to rotate to Xtend beans?’ and I said ‘absolutely.’ It’s a good reason to rotate chemistry. If it’s been working, change it. We have to rotate to change that last selection pressure that goes on that field.”

Farmers in northeast Arkansas have about a 50 percent chance of encountering resistance to PPO inhibitor herbicides in their fields in 2017, according to Jason Norsworthy, professor of weed science at the University of Arkansas and one of the organizers of the Pigposium.

Multiple resistance

But some growers are having to deal with Palmer amaranth populations that are not only resistant to PPO inhibitors but to three other groups of herbicides, as well, said Dr. Norsworthy, who holds the Elms Farming Chair of Weed Science at the U of A.

“In 2015, this field near Gregory in Woodruff County was found to contain resistance not only to the PPO inhibitor or Group 14 herbicides, but also to the ALS chemistries (Group 2), the dinitroanilines, things like Treflan and Prowl (Group 3), and Roundup (glyphosate – Group 9,” he said, referring to a field overgrown with pigweed.

“This was actually a conventional soybean field. Bob Scott did research in this field in 2015. And when you take a look at this population, we’re unable to grow Roundup Ready or conventional soybeans in this field because there is no effective postemergence option for the control of a pigweed population that has PPO resistance as well as glyphosate resistance.”

Weed scientists have now documented resistance in Palmer amaranth to the PPO inhibitor class of herbicides in seven states – Arkansas, Mississippi, Tennessee, Missouri, Illinois, Kentucky and Indiana. Norsworthy said 19 counties in Arkansas have confirmed PPO resistance.

“If you had any Palmer amaranth in one of your fields at harvest in 2016, you have better than a 50 percent chance that you have PPO-resistant Palmer in your fields,” said Dr. Norsworthy. “Folks, this is spreading, and it is spreading no different than what we saw with glyphosate. We are quickly losing one of the mainstays, especially in soybeans, from a weed control standpoint.”

Better than 50 percent

He displayed a slide of a bench top containing plants from about 40 different populations of Palmer amaranth. The plants were sprayed with 1.5 pints of Flexstar when they were about 1-inch tall.

“Anything you see that is still alive on this bench top (40 to 50 percent of the plants) would be resistant to the PPO chemistry,” he said. “Research has been conducted that shows the resistance mechanism is very similar to what you see in waterhemp in the Midwest. However, there are other PPO resistance mechanisms in this population that are much more resistant to the PPO chemistry than in some of the other pigweeds out there like waterhemp.”

Dr. Scott said that once resistance occurs that herbicide is lost to producers whether it’s glyphosate, Treflan or Flexstar.

“There’s no fitness penalty for the most part,” he said. “Some resistances have fitness penalties – the weed is damaged by the herbicide so it’s less competitive – but in pigweed it just seems to make it stronger the more resistant it gets.”

The threat of multiple resistance or resistance to more than one class of chemistry is frightening, Scott says. “I’ve had people calling me wanting to know where they can buy a good hoe, and that’s not my idea of weed science.”

Change it if it’s working

He said overlapping residual herbicides, rotating chemistries – even when the current herbicide is working – and using cultural practices will all be needed to preserve any new chemistries or traits growers may get in the years ahead. And growers need to treat the new traits – Xtend, Enlist and the new Balance trait that is expected to be approved in the near future – as if they were new herbicide chemistries.

Dr., Scott also called on herbicide manufacturers to help growers “do the right thing” economically when it comes to helping growers avoid overusing the currently available herbicide tools.

To read more about herbicide resistance-fighting efforts, click on http://www.deltafarmpress.com/cotton/odds-not-arkansas-growers-favor-ppo-herbicides-2017

Read Full Post »

  Picture2.png

Agri-Smart, operating under the umbrella of the parent organization, Brooklyn Bridge to Cambodia (BB2C) has designed a pioneering rice planting device.  By providing solutions to outdated rice farming methods, we are changing the way rice is farmed in Cambodia and beyond. We do this by delivering profit-making, labor saving innovative technology.

The traditional rice planting method of manual transplanting is effective, but labor intensive.  With migration leading to labor shortages in Cambodia and other rural areas, many farmers are forced to use less effective planting methods such as throwing (broadcasting) seeds into the field. The market is changing and our technology is well-positioned to address this urgent need for a new method.                                                                                                                              BEFORE

Und.jpg

Agri-Smart has developed an affordable, locally produced technology to address this challenge. With Agri-Smart’s Eli Rice Seeder, there is now a labor saving way to achieve the same results as the farmer’s time tested methods.

AFTER

Picture1.png

With our innovative device a team of two can plant a hectare in only two hours. This is a huge labor savings compared to the 40 labor-days required to manually transplant the same field. The seeder uses air pressure to seed the ground in rows, which allows each plant enough space to grow, and reduces the total amount of seed required by half when compared to current methods. Rows also allow for tool-assisted and chemical-free weeding, as well as more targeted and efficient fertilizing. Crop yields using our seeder meet or exceed the results of traditionally transplanted fields.

Benefits:

Saves farmers’ money on seed and fertilizer

  • Less labor intensive planting
  • Improved crop yields
  • Eliminates use of environmentally harmful herbicides
  • Income generation and economic development
  • Local manufacturing means benefits for small business
  • and entrepreneurs
  • Portable
  • Easy to maintain and repair
  • Agri-Smart’s field staff provides training and technical support

 

Contact: Paula Shirk

Brooklyn Bridge to Cambodia

Shirk.paula@gmail.com

http://www.bb2c.org

Read Full Post »

AgLand

Solving the weed problem: Farmers use multipronged approach to fight pests’ herbicide resistance

With “bulletproof” weeds like palmer amaranth and kochia becoming ever more resistant across the Great Plains, farmers must focus on rotating modes of action, using pre-emergent herbicides and following the label when mixing products, experts say.

For 25 years, kochia and other weeds were successfully controlled by glyphosate, a broad-spectrum herbicide initially sold under the brand name Roundup. Now, these weeds are showing resistance to the herbicide in fields from Texas to Canada, according to Kansas State University.

“We were in the honeymoon period of weed control in the late 1990s and early 2000s when glyphosate was working,” said K-State weed scientist Curtis Thompson.

Tillage

Some farmers are pulling out the tillage equipment, said Thompson. But if they can, there are more advantages to sticking with a no-till system.

Research conducted by Dr. Alan Schlegel at K-State Southwest Research and Extension Center at Tribune shows 13-year average yields of wheat/sorghum/fallow benefit from a straight no-till system, Thompson said. The research compares three systems: conventional, reduced tillage (ground is only tilled as needed between sorghum harvest and wheat planting), and complete no-till. Sorghum hybrid, soil fertility and in-crop weed control remain the same in all three systems.

The results: the 13-year average yield of wheat that was conventional – 13 bushels an acre; reduced tillage – 16 bushels an acre; and no-till – 21 bushels an acre. The 13-year average yield for sorghum was: conventional – 18 bushels an acre; reduced till – 30 bushels an acre; and no-till – 58 bushels an acre.

“I do think it is going to require a higher level of management in all phases of crop production,” he said of sticking with no-till. “I think it can be done.”

“Timeliness of effective herbicide applications is key so successful control,” he added. “It may mean that we apply herbicides in late fall or in January or February to control a severe kochia population, or perhaps fall applications to manage marestail.”

Crop rotation is also a key component, which allows the use of multiple modes of action of herbicides and different timings of application based on the crop planted, Thompson said.

“We aren’t ready to throw out the no-till technology and go back to the moldboard plow,” he said.

Pre-emergent herbicides

Terry Faurot, a Scott County farmer and chemical applicator, said his business has been busier due to the growing resistant-weed problem – and he’s busier earlier in the season.

“Farmers are jumping in early,” he said. “In the January to March range, I’m putting on pre-emergents.”

He advises farmers to follow a course of action that catches the weeds before they come out of the ground.

“What farmers are doing, they are coming in February and March and putting something like Dicamba and Atrazine, and creating a barrier. So, when the ground warms, it blocks (the weeds).”

Then, he said, as the herbicide wears out and it gets closer to planting, farmers can come back with another pre-emergent herbicide.

“The whole thing is to keep it from seeding out,” he said. “The biggest thing is to not let those weeds go to seed.”

Killing a growing weed crop

If kochia does emerge, don’t wait until the weeds are tall to try to kill it, he said. “Then they are really hard to kill.”

The best time to kill growing kochia is when it’s between 3 and 8 inches in height. Once it gets too tall, the stem gets woody and the plant won’t take in the chemical.

For palmer amaranth – or any weed – the earlier farmers catch them, the better.

Other modes of action

Faurot also recommends that farmers change up their mode of action.

“I usually spray with three modes of action to attack weeds,” he said, adding many farmers use a combination of 2,4-D, Dicamba and glyphosate.

But there are others. For instance, mixing atrazine and paraquat is a good combination for controlling weeds in the fall. Paraquat is a potent chemical and it defoliates the plant, Faurot said.

“I wouldn’t go with the same stuff all the time,” he said.

He also recommends mixing in ammonium sulfate to the tank mix, as well as surfactant, an additive that will help farmers get better coverage.

Also, don’t cut back on chemical. Follow the label. Once you damage the weed, it becomes even tougher to kill.

“You just can’t skimp on chemicals,” Faurot said. “You have to kill those weeds the first time around. If you damage it, you won’t kill it the second time around.”

Sometimes it is better to invest in more expensive chemical, he said.

“Sometimes it it is cheaper to put on the expensive stuff the first time than come in and do a rescue treatment later,” he said.

What other producers are doing

In Reno County, farmer Jud Hornbaker is using different mixes of chemicals to combat weeds. That includes the herbicide Sharpen for pre-plant burndown. For post emergence, he uses Anthem and Roundup.

Next year he will have Liberty in the tank mix, another post-emergent herbicide. He also uses Warrant, 2,4-D and Dicamba. He uses about 17 to 20 gallons of water an acre.

“The main thing is to get the weeds small, not wait until they are 3 feet high,” he said.

McPherson County farmer Monte Dossett also has several different modes of action to combat Palmer amaranth pigweed, including pre-emergent herbicide Authority and Zidua.

He has also used Fierce and Warrant. The chemicals work best when he can maintain soil moisture. The water in the soil helps make them work.

He applies a pre-emergent a month before planting and right after planting – along with Roundup once the plants emerge.

Some chemicals have gone up considerably, Dossett said.

“Before the weed resistance, I’d do one pre-emergent, and a lot of people wouldn’t do any,” he said.

Kansas Agland Editor Amy Bickel’s agriculture roots started in Gypsum. She has been covering Kansas agriculture for more than 15 years. Email her with news, photos and other information at abickel@hutchnews.com or by calling (800) 766-3311 Ext. 320.

 

 

Read Full Post »

Farmers Weekly

http://www.fwi.co.uk/arable/broad-leaved-weeds-are-becoming-harder-to-kill.htm

Adam Clarke
Tuesday 7 April 2015 14:27

Poppies in barley© Tim Scrivener

poppies-in-barley©TS-615x346
There is evidence to suggest that broad-leaved weeds are becoming more difficult to control, but the true extent of herbicide resistance in the UK is currently unknown.

To try and uncover how widespread the problem is, advisory body Adas is conducting a survey and invites growers and advisers to share their experiences.

Adas weed specialist Lynn Tatnell says that much of the evidence that resistance is on the rise is anecdotal and in many cases hasn’t been confirmed by seed testing.

“It might be the case that it isn’t as widespread as people fear, but we need a better understanding of the situation in the field.

“To do that, we need to reach out to as many people as possible who have to control broad-leaved weeds in their rotation – arable or otherwise,” says Mrs Tatnell.

Practical advice
Adas’s James Clarke adds that without gaining a better picture of how easy or difficult certain species of broad-leaved weeds are to control, it will be difficult to provide best practice advice to growers in the future.

At present, herbicide resistance is confirmed in mayweed, chickweed and poppy, but there may be more resistant species out there as many growers rely on a single ALS-inhibiting mode of action to control broad-leaved weeds.

“We need to hear from those that aren’t having a problem, as well as those that are.

“In the second phase of the survey we would like to investigate any problems further on the respondent’s farm and confirm whether it is herbicide resistance or there are other factors involved,” explains Mr Clarke.

By taking part in the short survey, you could give yourself a chance of winning one of 25 bottles of malt whisky.

Read Full Post »

BioProdex, Inc., a spinoff enterprise based on research from the University of Florida-IFAS, Gainesville, has made history by developing and registering the world’s first biological herbicide containing a plant virus as the active ingredient. Named SolviNix LC, the bioherbicide is a novel, groundbreaking product signifying a new paradigm in herbicides. The active ingredient in SolviNix is a naturally occurring virus called the Tobacco mild green mosaic virus strain U2 and it is registered for the control of tropical soda apple, an invasive weed in the southeastern United States.

The weed-killing ability of this virus was discovered and patented by Dr. R. “Charu” Charudattan, Dr. Ernest Hiebert, and associates in the Department of Plant Pathology, UF-IFAS. BioProdex, Inc. licensed this technology from the University of Florida Research Foundation, developed an industrial process to mass-produce the virus, assembled safety and efficacy data based on extensive research and testing, and successfully registered the bioherbicide with the U.S. Environmental Protection Agency under FIFRA Section 3.

Small Business Innovation Research (SBIR) grants from the U.S. Department of Agriculture-National Institute of Food and Agriculture (NIFA) enabled BioProdex to develop the mass production technology. The IR-4 Biopesticide and Organic Support Program, Princeton, NJ undertook and steered the registration effort for BioProdex.

For further information, please visit www.bioprodex.com.

Best regards,
Raghavan Charudattan, Ph.D.
Emeritus Professor, Univ. Florida-Plant Pathology Dept.
Gainesville, FL 32611-0680
TEL: 352-278-1572
FAX: 352-872-5035

Read Full Post »

Older Posts »