Feeds:
Posts
Comments

Archive for the ‘Natural enemies’ Category

    

“Air pollution threatens natural pest control”

When fields of oilseed rape are exposed to diesel exhaust and/or ozone – both found in emissions from diesel-burning vehicles and industry – the number of parasitic insects available to control aphids drops significantly, according to research published today.

The team, led by scientists from the University of Reading, used special equipment to deliver controlled amounts of diesel exhaust and ozone to oilseed rape plants. They also added aphids to the plants and measured the reproductive success of parasitic wasps that habitually lay their eggs inside a freshly stung aphid.

Dr. James Ryalls, University of Reading said: “Even at the levels we used, which were lower than safe maximums set by environmental regulators, the overall numbers of parasitic insects still fell. This is a worrying result as many sustainable farming practices rely on natural pest control to keep aphids and other unwelcome creatures away from valuable crops.


Parasitic wasp and aphid – Peter Swatton, Rothamsted Research 

“Diesel and ozone appear to make it more difficult for the wasps to find aphids to prey upon and so the wasp population would drop over time.”

While the majority of parasitic wasp species decreased in polluted environments, one species of parasitic wasp appeared to do better when both diesel and ozone were present. However, the researchers found that this combination of pollutants also correlated with changes in the plants which might explain the finding.

With both pollutants present, oilseed rape plants produced more of the compounds that give brassica family crops, including mustards and cabbages, their distinctive bitter, hot, and peppery flavor notes. These usually repel insects but in the case of Diaretiella rapae wasps, there was greater abundance and reproductive success associated with diesel exhaust and ozone together.

Dr Ryalls said: “Diaretiella rapae particularly likes to prey on cabbage aphids, which love to eat brassica crops.

“We know that some of the flavor and smell compounds in oilseed rape are converted into substances that do attract D.rapae. So, we could speculate that the stronger smell attracts the wasps and they are more successful in finding and preying upon aphids, that way. It could be that D.rapae is a good choice for pest control in diesel and ozone polluted areas.

“This really goes to show that the only way to predict and mitigate the impacts of air pollutants is to study whole systems.”

As transport shifts away from diesel and towards electric motors, air pollution will change. Knowing how pest-regulation service providers, such as parasitic wasps, respond to these progressive changes, will be essential to planning mitigation strategies to ensure sustainable food security now, and in the future. This research shows that we also must consider the impact of pollution on the plants, wasps, and prey insects, and the interactions between all three.

For more information:
University of Reading
www.reading.ac.uk 

Publication date: Thu 10 Nov 2022

Read Full Post »

Number I                                                                                                                     January, 2023

NEW INTERACTIVE PATHWAY KEYS FOR IDENTIFYING INSECT PESTS OF RICE AND THEIR NATURAL ENEMIES

The correct identification of insect pests and their natural enemies is critical for developing sound and sustainable pest management strategies. As agriculture intensified and insect pests became more problematic, identification of major insect pests and their natural enemies became increasingly relevant when designing appropriate pest management strategies, especially for rice. 

Appointed as the first entomologist at the International Rice Research Institute (IRRI) based in the Philippines, Dr. Mano D. Pathak, established a comprehensive rice insect pest and natural enemy collection in the early 1960s. The aim was to support national rice research programs identify specimens in their own rice arthropod collections. Subsequently, to support this objective, a dichotomous key to over 862 species was published in the chapter Taxonomy of Rice Insect Pests and their Arthropod Parasites and Predators, authored by insect and spider taxonomist, Alberto T. Barrion, with James A. Litsinger, in the book, Biology and Management of Rice Insects,edited by E. A. Heinrichs and published by IRRI in 1994.

In the 1990s, a similar collection program was begun to establish a rice insect and natural enemy collection at WARDA (West African Rice Development Association), now AfricaRice. Specimens of major insect pests and natural enemies found in West African rice were identified by Dr Barrion, who then created an illustrated, dichotomous identification key which was published in the book, Rice Feeding Insects and Selected Natural Enemies in West Africa, authored by E. A. Heinrichs and Alberto Barrion (2002).

Since the printed versions of both books have been out-of-print for several years, a recent upgrade of the Lucid software program https://www.lucidcentral.org provided the possibility of creating interactive, digital versions of both keys. Initially developed for creating matrix identification keys, the Lucid builder now enables paper-based dichotomous keys to be converted and “published” as online, interactive pathway keys. Courtesy of IAPPS, the IRRI and West African keys are now freely available online. You can access them here. Please note that we will soon add 450 photos of rice insect pests and their natural enemies to the Taxonomy of Rice Insect Pests and their Arthropod Parasites and Predators key. For further information, please email support@plantprotection.org

Prof. Geoff Norton

IAPPS President

E-mail: geoffn86@gmail.com

Read Full Post »