Feeds:
Posts
Comments

Archive for the ‘Biotic stress’ Category

With Xsect Xtra, Inveragro eliminates pepper pests

Inveragro, located in the valley of San Felipe, Guanajuato, and known for its tradition of producing and drying chili peppers, was having problems with pest control and humidity levels inside the greenhouse. With Xsect Xtra, they were able to reduce the entry of thrips by 50% while increasing their humidity by 15%, resulting in an ideal climate that promotes pepper growth.

Inveragro is a 10-hectare pepper greenhouse that started operations three years ago in the valley of San Felipe, Guanajuato, an area with different challenges for pepper growers due to its semi-arid climate and the presence of insects and pests such as whitefly, thrips, and weevils.

Germán Sandoval Barba, grower at Inveragro, was looking for a climate solution that would help him face these challenges. A year ago, he decided to try Xsect Xtra.

Ideal humid climate = healthier peppers
The pepper is a tropical crop that likes high humidity levels. Ideally the humidity inside a pepper greenhouse should be between 60% and 80%.

During the summer months, humidity inside Inveragro was between 45% and 50%, and it was necessary to keep the windows closed as a way to conserve humidity inside the greenhouse.

“Before installing Svensson’s insect control nets, I was worried that the temperature would rise too much and that it would affect the humidity. Once we tested the nets, the truth is that it was a very positive surprise the results that we had in terms of temperature and humidity”, says Germán Sandoval

Unlike last year when the windows were practically closed, now with Xsect Xtra, the windows are open between 20% and 30%, having a maximum temperature between 32 and 33 degrees. In addition, with Xsect Xtra, the humidity inside the greenhouse increased between 10% and 15%, compared to last year, achieving an ideal humidity between 60% and 75%, which benefits the growth of peppers.

“I thought that I was going to experience disadvantages with this insect control net because, for me, it was more important to sacrifice climate in order to reduce the entry of pests and insects. But to my surprise, I now have a better climate and fewer insects inside the greenhouse,” said Germán Sandoval.

Greenhouses with 50% fewer thrips
One of the biggest challenges for Germán is the entry of pests, and one way to control this problem is through hermeticity. Inveragro has four full-time employees dedicated exclusively to supervising any failure in the hermeticity of the greenhouses. “When I started looking for options to improve our hermeticity, I discovered the Svensson insect control nets, which would help us to improve our conditions,” says Germán Sandoval.

Before installing Xsect Xtra, during the fifth week of the production cycle, thrips were already seen inside the greenhouse, and it was necessary to apply pesticides and/or agrochemicals prior to the release of the biological control. “Now I can release the biological control we use Orius to control thrips, without pesticides and/or agrochemicals applications that could damage the biological control program,” says Germán, “since the installation of Xsect Xtra, 50% fewer thrips have entered the greenhouse”.

Powdery mildew was another climate problem at Inveragro, and it was necessary to apply agrochemicals at least once a week. During the first year with Svensson’s insect control net, Germán continued with the same program, but no powdery mildew was found inside the greenhouse.

“I’ve already modified my program for this year. I’m only going to apply preventive products every 15 days, which reduces by 50% the cost of powdery mildew throughout the year because now I have better climate conditions in terms of humidity, which is more controllable and promotes pepper growth”.

Germán has also noticed improvements in the beneficial program used to control thrips. He used to have 4 Orius per square meter, and this year he only has three orius per square meter, which means savings in this year’s beneficials budget.

“What Xsect Xtra has given me is improved humidity, fewer pests, and reduced phytosanitary diseases.”
 
Finally, Germán shared the following advice for all pepper growers: “I would tell growers who are afraid to try these nets not to be afraid. In the beginning, I hesitated, but it is something that will help them. What it can generate in the climate is minimal and what it can help them in the phytosanitary issue is very broad. The net pays for itself”.

For more information:
Ludvig Svensson

info@ludvigsvensson.com www.ludvigsvensson.com    

Publication date: Mon 14 Nov 2022

Read Full Post »

Fruit and vegetable crops in the Willamette Valley have been affected

USDA ARSWFP-ARS-BMSB.jpg

One promising biological approach is the samurai wasp (Trissolcus japonicus),

The brown marmorated stink bug has increased this year.

Fruit and vegetable crops in the Willamette Valley have been affected.

Kym Pokorny | Nov 11, 2022

Jan 18, 2023 to Jan 20, 2023

https://c71d1d9bfc4c1ba1e62a1071cab6352e.safeframe.googlesyndication.com/safeframe/1-0-39/html/container.html

The amount of invasive brown marmorated stink bugs in 2022 tops anything seen in Oregon for at least five years and poses a serious threat to Oregon crops and garden plants, according to Oregon State University Extension Service’s orchard crop specialist.

Nik Wiman, an associate professor in the College of Agricultural Sciences, said fruit and vegetable crops in the Willamette Valley have been affected.

https://c71d1d9bfc4c1ba1e62a1071cab6352e.safeframe.googlesyndication.com/safeframe/1-0-39/html/container.html

“It’s unusual for brown marmorated stink bugs to feed on fruit and vegetable crops,” he said. “There has been a lot of damaging populations of BMSB in hazelnuts orchards. Growers use preventative measures so we’re surprised we’ve seen so many.”

It’s unclear why the population exploded this year, Wiman said. Like other insects, the population of the shield-shaped brown marmorated stink bug (BMSB) varies from year to year depending on climatic factors. The extremely wet spring most likely contributed to it, but the increase could also be attributed to a natural cycle.

Native to Asia, BMSB was introduced on the U.S. East Coast in the late 1990s – probably by ship – and has spread to almost every state in the country, including Oregon in 2004. The insect feeds on at least 170 plants, particularly vegetables, pears, apples and hazelnuts, but also ornamentals. Its name describes the odor they emit when they’re crushed.

Oregon’s hazelnut industry, valued at $132 million in 2020, is one of the state’s crops hardest hit by the invasive bug, according to the Oregon Department of Agriculture. The state’s problem echoes the situation in Turkey – the world’s leader in hazelnut production – as well as Italy and the country of Georgia, said Wiman, who researches alternative practices for controlling BMSB, including biological control, habitat manipulation, trap crops and barriers.

Samurai wasp

One promising biological approach is the samurai wasp (Trissolcus japonicus), an insect native to areas of Asia where it keeps the indigenous BMSB population under control. Scientists have discovered the wasp in the United States and Oregon, where it was initially distributed across the state by Wiman and a team of scientists at OSU and elsewhere.  The Oregon Department of Agriculture is now leading the effort.

The parasitic wasp hunts for the egg masses of the stink bug and lays an egg inside each egg in the mass. The wasp develops inside the egg, effectively killing the stink bug, and then chews its way out. OSU Extension has a short publication on the wasp and its effect on the stink bug.

In addition to agricultural crops, the stink bug shows up in homes in autumn when they are looking for a warm, dry place for winter.

“We’ve done analysis of reports we get from people,” Wiman said. “We’ve looked at timing and by far and away we get the most BMSB reports in the fall. Adults are at peak and are trying to get into houses. Warm fall weather gives more opportunity to get into buildings. They can be very annoying when they are coming into homes, and they may fly around inside your house all winter. Then they come out in spring.”

Wiman advises homeowners to seal all cracks where the stink bug can enter and vacuum up inside infestations. On outdoor buildings, washing them off with a strong shot of water will keep some at bay. If they come back, spray them again.

Farmers and homeowners can serve a key role in samurai wasp research by collecting possible brown marmorated stink bug egg masses and reporting them.

[Kym Pokorny is a communication specialist at OSU.]

Source: Oregon State University

TAGS: CROPS

Read Full Post »

Agdia launches rapid molecular test kit for tomato mottle mosaic virus

Agdia has launched a RNA-based assay, on their AmplifyRP XRT platform, for the detection of Tomato mottle mosaic virus (ToMMV). 

Global tomato and pepper production has been significantly disrupted in recent years by emerging pathogens. One such pathogen, Tomato brown rugose fruit virus (ToBRFV, Tobamovirus), is thought to have caused billions of dollars in damage to the tomato industry alone over the past few years. While advancements in breeding for pathogen resistance traits over the past two decades have largely protected tomato and pepper crop production from viral threats, ToBRFV was able to bypass resistance with devastating consequences. The virus continues to cause disruption of the global seed supply chain along with affecting yield and marketability of tomato fruit when not properly excluded from production facilities.

Much like ToBRFV, Tomato mottle mosaic virus is also able to break through well-established viral resistance traits, and thus represents yet another significant threat to tomato and pepper production worldwide.

Initially found in tomato crops in Mexico in 2013, Tomato mottle mosaic virus has since been detected in the United States, Brazil, Europe, Africa, Asia and Iran. Several other Tobamovirus-infected samples collected prior to 2013 which were previously attributed to Tobacco mosaic virus (TMV) or Tomato mosaic virus (ToMV) have since been distinguished as ToMMV infections via high-specificity molecular methods which were not previously available.

Symptoms caused by ToMMV infection include mottling, necrosis, flower abortion and leaf distortion. Much like other Tobamoviruses, ToMMV is highly transmissible via mechanical means (pruning, harvesting, etc.) and may also be present in seed, although further studies are needed to demonstrate whether vertical transmission occurs at any significant level.

Agdia’s AmplifyRP XRT for ToMMV has been validated for use with tomato and pepper seeds and leaf in addition to other secondary matrixes such as peas (Pisum sativum) and petunia. As a rapid, field-deployable molecular method requiring far less training than traditional PCR methods, this assay provides users with greater flexibility to deploy detection capabilities where they need it, when they need it. Use cases for this assay include, but are not limited to:

  • In-field monitoring at remote production sites as a stand-alone assay.
  • Screening incoming plantlets & monitoring production crops in commercial greenhouses
  • Laboratory-based molecular diagnosis with crude or purified extracts with faster time-to-result than traditional PCR or qPCR methods. This assay can be used with Agdia’s AmpliFire isothermal fluorometer or with most real-time PCR machines.

Agdia’s AmplifyRP XRT for ToMMV is highly specific to ToMMV and has been proven through experimentation and in-silico analysis to detect isolates from around the world. No cross-reactivity was observed with high titer samples from other Tobamoviruses, including Cucumber green mottle mosaic virus (CGMMV), Kyuri green mottle mosaic virus (KGMMV), Pepper mild mottle virus (PMMoV), Tobacco mosaic virus (TMV), Tomato brown rugose fruit virus (ToBRFV), Tomato mosaic virus (ToMV), Tobacco mild green mosaic virus (TMGMV), Zucchini Green Mottle Mosaic Virus (ZGMMV) and more.

For more information:
Agdia 
52642 County Road 1
Elkhart, IN 46514
phone 1-574-264-2615
fax 1-574-264-2153
info@agdia.com
www.agdia.com

Read Full Post »

How plant breeding innovations are helping feed a hungry world

Mikaela Waldbauer | Sustainable Agricultural Innovation & Food (SAIFood) | April 29, 2022

Print Friendly, PDF & Email
Rice can survive submerged, but not for long. Plant breeding technology is getting the crop ready for climate change floods. Credit: Sasin Tipchai
Rice can survive submerged, but not for long. Plant breeding technology is getting the crop ready for climate change floods. Credit: Sasin Tipchai

This article or excerpt is included in the GLP’s daily curated selection of ideologically diverse news, opinion and analysis of biotechnology innovation. It is posted under Fair Use guidelines.

As of 2019, nearly 26% of the globe’s population “experienced hunger or did not have regular” access to safe and nutritious food (FAO, 2020). With increasing global populations and a changing climate, this number is estimated to surpass 840 million by 2030 (UN, n.d.).

Plant breeding technologies have impacted global food security in positive ways. One of the major ways genetically modified (GM) crops can influence global food security is by adapting plants to the changing climate. Plant breeding can be utilized to develop crop plant varieties with a higher tolerance to environmental stresses such as heat, drought, and flooded conditions.

For example, a rice variety developed by plant breeders in Bangladesh has been shown to survive flooded conditions for as long as two weeks, and common beans have been used to develop both heat and cold resistant varieties capable of being grown in both the Durango region of Mexico and the high altitudes of Columbia and Peru (Global Partnership Initiative for Plant Breeding Capacity Building [GIPD], n.d.).

The climate is changing at a faster rate than crop plants can adapt, and few solutions to this issue exist. One key solution is the improvement of crop plant varieties through new plant breeding innovations. The evidence is clear that GM crop varieties are superior in performance under harsh conditions (GIPD, n.d.). However, these solutions are not utilized to their fullest extent due to intense scrutiny and rejection.

Importance of nutritious diets

With an increase in the global population, food insecurity is predicted to rise. To compensate for population growth, food production must increase at a faster rate than it currently is today. Research shows plant breeding can address this concern. According to a 22-year study on the economic impact of GM crops, global production has increased substantially because of yield increased from GM crops (Brookes & Barfoot, 2020). Urbanization is reducing the area of arable land available for food production. Without the use of additional land to grow more food, an increase in yields on the land currently cultivated will be solely relied on to increase production. GM crops are one tool that can be used in improving production levels of food, when compared to conventional crops, by increasing yields.

Considering smallholder farmers make up 50% of the world’s undernourished (Qaim & Kouser, 2013), increasing the profit of smallholder farmers should have a net decrease in food insecurity in developing countries. Smallholder profits have also increased with the adoption of GM crops. Studies have found that GM crop varieties have improved yields substantially when compared to conventional crops. Most notably, the highest improvements in crop yield have been observed in developing countries, where food insecurity is the highest (Brookes & Barfoot, 2014). Since the study began in 1996, there has been a $225 billion increase in farmer income, as of 2018. A reduction in pesticide cost and improvement in yields is responsible for increased profit, primarily through insect-resistant varieties such as the newly commercialized Bt cowpea in Nigeria. An increase in farmer profit through GM crop cultivation is clear, especially in low-income countries. Yet, the very regions that could benefit most from these crops are the ones that reject them. More widespread commercialization of GM crop varieties has the impact to increase farmer profit, specifically smallholder profit, which makes up a generous portion of the world’s undernourished.

Micronutrient deficiency affects over 50% of the global population (Nestel et al., 2006). Large consumption of staple food products in developing countries such as rice, wheat, and corn with little variety can lead to nutritional deficiencies including deficiencies in vitamin A, iron, zinc, among others. Recently, a GM rice crop biofortified with beta-carotene (a vitamin A precursor) was approved for cultivation in the Philippines, called Golden Rice. Golden Rice has the potential to diminish the prevalence of micronutrient-related malnutrition, vitamin A deficiency. Golden Rice can combat vitamin A deficiency in high rice-consuming regions by allowing the consumption of beta-carotene without changing the taste or agronomic qualities of the rice while remaining at a comparable cost to conventional rice (IRRI, n.d.). Evidence does depict the capabilities of biofortification in a deficient diet.

Looking forward

Of the opposing views brought forth by ant-GMO advocates, most are refutable. Sifting through the scientific literature, is it suggested that while GM crops may offer a net positive impact on the state of global food security, they are not a panacea to the enormous problem of global food insecurity. Rather, GM crops can be viewed as one vital tool assisting in the mitigation of global food insecurity.

Mikaela Waldbauer is an Agronomy student at University of Saskatchewan interested in food security and plant breeding. Follow Mikaela on Twitter @Mikaela_Marion

A version of this article was posted at Saifood and is used here with permission. You can check out Saifood on Twitter @SAIFood_blog

Read Full Post »

Researchers analyze roadmaps toward larger, greener global rice bowl

Nebraska Today/University of Nebraska-Lincoln

Close-up of rice plants

Shutterstock

Rice is the main food staple for more than half of the global population, and as the population grows, demand for rice is expected to grow, too.

But increasing global rice production is not a simple prospect.

“Global rice production is challenged now due to the negative environmental impact, water scarcity, labor shortage and slowing yield increases in many parts of the world,” said Shen Yuan, a postdoctoral research associate at Huazhong Agricultural University in China who spent two years as a visiting scholar at the University of Nebraska–Lincoln.

The challenge is producing more rice on existing cropland, and doing so while minimizing the environmental impact. New research led by Shaobing Peng, a professor of agronomy at Huazhong Agricultural University, and Patricio Grassini, associate professor of agronomy at Nebraska and co-leader of the Global Yield Gap Atlas, provides an analysis of roadmaps toward sustainable intensification for a larger global rice bowl. The research was published Dec. 9 in Nature Communications.

“Comparing rice cropping systems around the world in terms of productivity and efficiency in the use of applied inputs can help identify opportunities for improvement,” Grassini said.

The global assessment was led by Huazhong Agricultural University and the University of Nebraska–Lincoln, in collaboration with the University of California, Davis, and Texas A&M’s AgriLife Research Center in the United States; the International Rice Research Institute; Africa Rice Center; Indonesian Center for Rice Research and Assessment Institute of Agricultural Technology in Indonesia; Federal University of Santa Maria and EMBRAPA Arroz e Feijão in Brazil; National Institute of Agricultural Research in Uruguay; and Indian Institute of Farming Systems Research and Indian Institute of Water Management in India. The study assessed rice yields and efficiency in the use of water, fertilizer, pesticides and labor across 32 rice cropping systems that accounted for half of global rice harvested area.

“This study is the most comprehensive global evaluation of production systems for a major staple crop that I am aware of, and it will set the standard for future global comparison of such systems,” said Kenneth G. Cassman, professor emeritus at Nebraska and a co-author of the paper.

The good news, according to the study, is that there is still substantial room to increase rice production and reduce the negative environmental impact.

“Around two-thirds of the total rice area included in our study have yields that are below the yield that can be attained with good agronomic practices,” Yuan said. “Closing the existing yield gap requires better nutrient, pest, soil and water management, reduction of production risk and breeding programs that release rice cultivars with improved tolerance to evolving pests and diseases.”

Another important finding from the study is that food production and environmental goals do not conflict.

“We found that achieving high yields with small environmental impact per unit of production is possible,” Peng said. “Indeed, there is room for many rice systems to reduce the negative impact substantially while maintaining or even increasing rice yields.”

Producing more and minimizing the environmental footprint is an enormous challenge, Grassini said.

“Improved agronomic practices, complemented with proper institutions and policy, can help make rice cultivation more environmentally friendly,” Grassini said. “Our study marks a first step in identifying systems with the largest opportunities for increasing crop yields and resource-use efficiency, providing a blueprint to orient agricultural research and development programs at national to global scales.”SHARE1

NEWS RELEASE CONTACTS

Patricio Grassini, Associate Professor of Agronomy and Horticulture402-472-4398Website

TAGS

Read Full Post »

Jun 26, 2021 – Energy & Environment

West coast drought leads to grasshopper plague

Oriana Gonzalez

Picture taken up-close of a grasshopper

Photo: Edwin Remsberg/VW PICS/Universal Images Group via Getty Images

As the Southwest remains stuck in the most intense drought of the 21st century, a plague of grasshoppers has emerged, threatening farmers’ rangelands, AP reports.

Driving the news: The Department of Agriculture has responded by launching an extermination campaign against grasshoppers, the largest since the 1980s. Authorities have started to spray thousands of square miles with pesticide to kill immature grasshopper before they become adults.

  • But, but, but: Some environmentalists worry the pesticides could kill other insects, including grasshopper predators and struggling species such as monarch butterflies, AP notes.
  • The USDA said it would spray rangelands in sections to prevent other insect wildlife from being affected by the pesticide.

State of play: The USDA released a grasshopper hazard map that shows some areas have more than 15 grasshoppers per square yard in Montana, Wyoming, Oregon, Idaho, Arizona, Colorado and Nebraska.

Why it matters: “Left unaddressed, federal officials said the agricultural damage from grasshoppers could become so severe it could drive up beef and crop prices,” AP writes.

What they’re saying: “Drought and grasshoppers go together and they are cleaning us out,” Frank Wiederrick, a farmer in Montana, told AP.

Read Full Post »

University Of São Paulo: The Conductor Of An Orchestra: Red-Rot Fungus Controls Insect And Plant To Spread

By Iednewsdesk On Jun 15, 2021Share

Infestations by pests and fungi in the sugarcane crop are one of the biggest problems faced by the sugar-alcohol industry and often occur together. Red rot, caused by the fungus Fusarium verticillioides, and the sugarcane borer, for example, are almost always in association. It was believed that the borer opened the way for the fungus to contaminate the sugarcane, but researchers at USP’s Luiz Queiroz School of Agriculture (Esalq) in Piracicaba, in an innovative discovery, point out that the relationship between the two is much closer than that it seems and the fungus is the master of this whole scheme.

Until then, it was understood that the fungus F. verticillioides was opportunistic, that is, it took advantage of holes made by the insect Diatraea saccharalis (sugarcane borer) in the cane stalks to infest the plant. However, the work Fungal phytopathogen modulates plant and insect responses to promote its dissemination , published in The ISME Journal, a journal of the International Society for Microbial Ecology published by the group Nature, revealed that this is not quite the truth. The result of seven years of research by the teams of professors Marcio de Castro Silva Filho, from the Laboratory ofMolecular Biology of Plants, and José Maurício Simões Bento, from the Laboratory of Chemical Ecology and Insect Behavior, both from Esalq, the study points out that the fungus F. verticillioides manipulates the borer and the plant in order to spread on the largest possible scale.

Relationship of the fungus with the sugarcane borer

All plants have natural defenses that resist different types of infestations and the fungus F. verticillioides cannot, by itself, infest sugarcane. He needs a facilitator to be able to contaminate it, since the healthy plant has in hand structural and biochemical mechanisms to resist the penetration of the fungus. In an environment where it is present, for example, but there is no borer, contamination of the sugarcane by the fungus is difficult.

Unlike other fungi, F. verticillioides has the advantage of an intimate interaction with the sugarcane borer, which allows its dispersion in a potentiated way. It produces volatile compounds that strongly attract D. saccharalis and when consumed, it infects the caterpillar and becomes part of its life cycle, remaining until the next generation, even in the absence of the fungus.

“As soon as the borer becomes an adult, like a moth, the fungus is transmitted to its descendants, who continue the cycle by inoculating the fungus into healthy plants”

This phenomenon is known as vertical transfer, a rare event in the biological realm and the first recorded case of a fungus-insect interaction. Professor Marcio de Castro Silva Filho, from the Genetics Department at Esalq and one of those responsible for this discovery, explains that “as soon as the borer becomes an adult, like a moth, the fungus is transmitted to its descendants, who continue the cycle by inoculating the fungus on healthy plants”.

In this way, the caterpillar becomes not a facilitator for the penetration of the fungus in the plant, as previously thought, but its own vector. One of the experiments in the study showed, for example, that when placing F. verticillioides and the caterpillar next to the sugarcane, its distribution throughout the plant is ten times greater than if the fungus were only using a mechanical perforation in the sugarcane.

The caterpillar, despite not having any direct benefit from this interaction, is also not harmed by its association with the fungus. The F. verticillioides remains in the drill throughout their life cycle without interfering, but he, in turn, is immensely benefited from this relationship.

Fungus-plant interaction

When infecting the plant, the fungus causes the cane stalk rot because it is a necrotrophic pathogen, that is, it destroys plant tissues through the release of toxins. The infestation causes a reduction in the sugar content and contamination of the sugarcane juice, which affects the quality and yield of the product. According to data from the Sugarcane Technology Center (CTC), the contamination of sugarcane fields by the association of the fungus with the insect causes annual losses in the range of R$ 5 billion, that is, around 400 thousand tons of sugarcane are not crushed per year.

In addition, the fungus alters the composition of the volatile compounds naturally produced by the plant to make it produce specific volatiles that attract healthy adult female borers. These, in turn, will ovipose uncontaminated plants in order to enhance the fungus’ dispersion. Professor at the Department of Entomology and Acarology at Esalq and also coordinator of the research, José Maurício Simões Bento, says that these volatiles “reduce the parasitism efficiency of the natural enemy of the sugarcane borer, the wasp Cotesia flavipes , making it difficult to biological control, because because the plant changes the composition of volatiles, the wasp has more difficulty in finding the caterpillar in the plantations”.

The way in which the fungus, aided by the borer, spreads in sugarcane fields reinforces the need for increased attention to biological control from the lowest infestations of the disease, in order to reduce as much as possible the population of the sugarcane borer, D. saccharalis, since it is the vector of the disease. For this, explains Professor Simões, “pest infestations should be kept, whenever possible, in low infestations, both by means of the larval parasitoid ( Cotesia flavipes ) and by the egg parasitoid ( Trichogramma galloi )”.

Fungus-plant-insect interaction

The fungus created a practically perfect strategy for its dissemination, in which it controls the insect in the caterpillar and adult (moth) stages, in addition to manipulating the plant, which makes it, in the words of Professor Castro Silva, the “great conductor of an orchestra”.

Read Full Post »

Jorge Hernando Pedraza, the president of the CAN, is traveling to Ecuador where he’ll meet with the banana sector

“20 months ago the Fusarium pest was 1,200 kilometers away from Ecuador and now it’s 350 kilometers”

Jorge Hernando Pedraza, the Secretary-General of the Andean Community (CAN), arrived in Ecuador with a priority agenda: agreeing on actions to prevent the advance of Fusarium race 4 (which was detected in Piura, Peru, in April) in the region.

“We must recall that there was an outbreak in Colombia 20 months ago and that we immediately took actions to prevent it from advancing. The CAN held meetings in Quito that were attended by 18 ministers of Agriculture, from Mexico to Patagonia, delegates from the FAO and other organizations, as well as representatives from the banana productive sectors. At that time the experts warned that the pest could reappear at any moment. Two months ago it reappeared in Piura. Twenty months ago it was 1,200 kilometers away from Ecuador and now it is 350 kilometers away, so urgent measures must be taken to avoid the collapse of the crop,” he said.

“We started to work from the first moment we found about this. The four Ministers of Agriculture of Peru, Colombia, Ecuador, and Bolivia were summoned. Peru has done an important job. I’ll discuss the issue with the Minister of Agriculture and will raise the issue at the Andean presidential summit, on July 2, in Villa de Leyva, where President Guillermo Lasso will assume the pro tempore presidency of the CAN, from the hands of President Ivan Duque. The day after tomorrow I will meet with the entire banana cluster in Guayaquil, to take measures and coordinate commitments with multilateral organizations to obtain resources to preserve the banana sector, which is a very important source of income for Ecuador (about 3.4 billion dollars) and for the CAN.”

“In addition, we are going to continue carrying out programs that came from the pro tempore presidency of Colombia, emphasizing the improvement of relations with Europe and opening up solid relations with Eurasia (a bloc of five countries: Russia, Kazakhstan, Kyrgyzstan, Belarus, and Armenia), which is important to increase the business relationship. We have worked a lot on competitiveness, on the training of MSMEs, and on the recovery of the post-pandemic economic apparatus. Issues that Ecuador considers important.”

In fact, the CAN has not been an exception and the pandemic has hit the region hard, both in its health and economic level. “In 2018 our exports amounted to 120,000 million dollars and we were the eleventh world economy. In 2019 we reached 115 billion, and in 2020 we fell to 97 billion, with an impact of 12%. However, we think we could have a 5% recovery this year,” stated Jorge Hernando.

Source: eluniverso.com 

Publication date: Mon 28 Jun 2021

Read Full Post »

NEWS RELEASE 12-MAY-2021

EurekAlert

Scientists uncover how resistance proteins protect plants from pathogens

CHINESE ACADEMY OF SCIENCES HEADQUARTERS

Research NewsSHARE PRINT E-MAIL

IMAGE
IMAGE: THE ZAR1 RESISTOSOME ACTS AS AN ION CHANNEL IN THE PLASMA MEMBRANE TO TRIGGER CA2+ ION FLUX AND IMMUNE RESPONSES view more CREDIT: BI ET AL., CELL

In plants, disease resistance proteins serve as major immune receptors that sense pathogens and pests and trigger robust defense responses. Scientists previously found that one such disease resistance protein, ZAR1, is transformed into a highly ordered protein complex called a resistosome upon detection of invading pathogens, providing the first clue as to how plant disease resistance proteins work. Precisely how a resistosome activates plant defenses, however, has been unclear.

A joint team led by Profs. ZHOU Jianmin, CHEN Yuhang and HE Kangmin at the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences and Prof. CHAI Jijie at Tsinghua University recently employed state-of-the-art electrophysiology and single-molecule imaging to investigate the molecular mechanism by which the ZAR1 resistosome activates plant immunity.

By using Xenopus oocyte- and planar lipid bilayer-based electrophysiology studies, the researchers first showed that the ZAR1 resistosome is a cation-selective, calcium-permeable ion channel. They then applied single-molecule imaging to show that the activated ZAR1 resistosome forms pentameric oligomers in the plasma membrane of the plant cell, confirming previous structural data.

The formation of ZAR1 resistosome in the plant cell triggers sustained calcium ion influx and subsequent immune signaling events leading to cell death, and these processes are all dependent on the activity of the ion channel.

Together, these results support the conclusion that the calcium signal triggered by the ZAR1 channel initiates immune activation, thus providing crucial insights into the working of plant immune systems.

Disease resistance proteins are the largest family of plant immune receptors and are of major agricultural importance in protecting crop plants from assault by diverse pathogens and pests including viruses, bacteria, fungi, oomycetes, nematodes, insects, and parasitic weeds.

The findings of this study shed light on the precise biochemical function of many disease resistance proteins, and suggest new methods for controlling diseases and pest damage in crop plants.

This work “presents important findings that will change our view of ETI-triggered cell death,” said a reviewer from Cell. “The use of TIRF to visualize and monitor in real-time membrane-associated resistosomes is very exciting and many researchers will strive to emulate this method.”

###

This study, entitled “The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling,” was published online in Cell on May 12.

The research was supported by the National Natural Science Foundation of China and the National Key Research and Development Program of China.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

Read Full Post »

An enzyme in the saliva of certain insects prevents their food plants from warning neighboring plants of an attack

Date: February 17, 2021 Source:Penn State

Summary:Like a scene from a horror movie, tomato fruitworm caterpillars silence their food plants’ cries for help as they devour their leaves. That is the finding of a multidisciplinary team of researchers, who said the results may yield insights into the abilities of crop plants — such as tomato and soybean — to withstand additional stressors, like climate change.Share:    FULL STORY


Like a scene from a horror movie, tomato fruitworm caterpillars silence their food plants’ cries for help as they devour their leaves. That is the finding of a multidisciplinary team of researchers, who said the results may yield insights into the abilities of crop plants — such as tomato and soybean — to withstand additional stressors, like climate change.

“We have discovered a new strategy whereby an insect uses saliva to inhibit the release of airborne plant defenses through direct manipulation of plant stomata,” said Gary Felton, professor and head of the Department of Entomology at Penn State, noting that stomata are tiny pores on plant leaves that regulate gas exchange, including plant defensive emissions and carbon dioxide, between the plant and the environment.

Specifically, the researchers studied the effects of a particular enzyme — glucose oxidase (GOX) — that occurs in the saliva of tomato fruitworm caterpillars (Helicoverpa zea) on plant stomata and plant defensive emissions, called herbivore-induced plant volatiles (HIPV).

“HIPVs are thought to help protect plants from insect herbivores by attracting natural enemies of those herbivores and by alerting neighboring plants to the presence of herbivores nearby,” Felton said. “Consequently, stomatal closure has the potential to alter interactions across the entire plant community.”

In their experiments, the researchers used CRISPR/Cas9, a technique for editing genomes, to produce caterpillars that lack the GOX enzyme. In separate glass chambers fitted with filter traps to collect HIPVs, they allowed the caterpillars with the non-functional enzyme, along with unmanipulated caterpillars, to feed on tomato, soybean and cotton plants for three hours. To examine the stomatal response to GOX, the team examined the plant leaves under a microscope and measured the size of the stomatal openings. Next, they extracted the volatile compounds from the filter traps and used gas chromatography, coupled with mass spectrometry, to identify and quantify the HIPVs.

“This study is the first to use CRISPR/Cas9-mediated gene editing to study the function of an insect salivary enzyme,” said Po-An Lin, a graduate student in entomology at Penn State and the lead author of the paper. “Using pharmacological, molecular, and physiological approaches, we were able to show that this salivary enzyme plays a key role in insect-induced stomatal closure and likely the reduction of several important defensive emissions.”

Indeed, the team — comprising experts in molecular biology, chemical ecology, plant physiology and entomology — found that GOX, secreted by the caterpillar onto leaves, causes stomatal closure in tomato plants within five minutes, and in both tomato and soybean plants for at least 48 hours. They also found that GOX inhibits the emission of several HIPVs during feeding, including (Z)-3-hexenol, (Z)-jasmone and (Z)-3-hexenyl acetate, which are important airborne signals in plant defenses. Interestingly, they did not find an effect of GOX on the cotton plants, which, the team said, suggests that the impacts of GOX on stomatal conductance is species dependent.

The team’s results appeared in the Jan. 18 issue of New Phytologist.

Lin noted that the fact that tomato fruitworm caterpillars evolved a salivary enzyme that inhibits emissions of defensive volatiles in certain species suggests the importance of plant airborne defenses in the evolution of insect herbivores.

“Given the ubiquity of HIPVs in plants, it is likely that traits which influence HIPVs have evolved broadly among insect herbivores,” he said.

Not only do these insects damage individual plants, but they also may render them less able to withstand climate change.

“Stomata are important organs of plants that not only detect and respond to environmental stressors, but also play a central role in plant growth,” said Felton. “Because stomata play an important role in regulating leaf temperature and leaf water content, our findings suggest that the control of stomatal opening by an insect could impact the plant’s response to elevated temperatures occurring with climate change and response to water deficiency.”

Other Penn State authors on the paper include Yintong Chen, graduate student in molecular, cellular and integrative biosciences; Chan Chin Heu, a former postdoctoral researcher; Nursyafiqi Bin Zainuddin, graduate student in entomology; Jagdeep Singh Sidhu, graduate student in horticulture; Michelle Peiffer, research support assistant in entomology; Ching-Wen Tan, postdoctoral scholar in entomology; Jared Ali, assistant professor of entomology; Jason L. Rasgon, professor of entomology and disease epidemiology; Jonathan Lynch, Distinguished Professor of Plant Science; and Charles T. Anderson, associate professor of biology. Also on the paper are Duverney Chaverra-Rodriguez, postdoctoral scholar, University of California, San Diego; Anjel Helms, assistant professor of chemical ecology, Texas A&M University; and Donghun Kim, assistant professor, Kyungpook National University.

The National Science Foundation, Agricultural and Food Research Initiative Program of the United States Department of Agriculture and a Hatch Project Grant supported this research.


Story Source:

Materials provided by Penn State. Original written by Sara LaJeunesse. Note: Content may be edited for style and length.


Journal Reference:

  1. Po‐An Lin, Yintong Chen, Duverney Chaverra‐Rodriguez, Chan Chin Heu, Nursyafiqi Bin Zainuddin, Jagdeep Singh Sidhu, Michelle Peiffer, Ching‐Wen Tan, Anjel Helms, Donghun Kim, Jared Ali, Jason L. Rasgon, Jonathan Lynch, Charles T. Anderson, Gary W. Felton. Silencing the alarm: an insect salivary enzyme closes plant stomata and inhibits volatile releaseNew Phytologist, 2021; DOI: 10.1111/nph.17214

Read Full Post »

science daily

Nanosensor can alert a smartphone when plants are stressed

Carbon nanotubes embedded in leaves detect chemical signals that are produced when a plant is damaged

Date:
April 15, 2020
Source:
Massachusetts Institute of Technology
Summary:
Engineers can closely track how plants respond to stresses such as injury, infection, and light damage using sensors made of carbon nanotubes. These sensors can be embedded in plant leaves, where they report on hydrogen peroxide levels.
Share:
FULL STORY

MIT engineers have developed a way to closely track how plants respond to stresses such as injury, infection, and light damage, using sensors made of carbon nanotubes. These sensors can be embedded in plant leaves, where they report on hydrogen peroxide signaling waves.

Plants use hydrogen peroxide to communicate within their leaves, sending out a distress signal that stimulates leaf cells to produce compounds that will help them repair damage or fend off predators such as insects. The new sensors can use these hydrogen peroxide signals to distinguish between different types of stress, as well as between different species of plants.

“Plants have a very sophisticated form of internal communication, which we can now observe for the first time. That means that in real-time, we can see a living plant’s response, communicating the specific type of stress that it’s experiencing,” says Michael Strano, the Carbon P. Dubbs Professor of Chemical Engineering at MIT.

This kind of sensor could be used to study how plants respond to different types of stress, potentially helping agricultural scientists develop new strategies to improve crop yields. The researchers demonstrated their approach in eight different plant species, including spinach, strawberry plants, and arugula, and they believe it could work in many more.

Strano is the senior author of the study, which appears today in Nature Plants. MIT graduate student Tedrick Thomas Salim Lew is the lead author of the paper.

Embedded sensors

Over the past several years, Strano’s lab has been exploring the potential for engineering “nanobionic plants” — plants that incorporate nanomaterials that give the plants new functions, such as emitting light or detecting water shortages. In the new study, he set out to incorporate sensors that would report back on the plants’ health status.

Strano had previously developed carbon nanotube sensors that can detect various molecules, including hydrogen peroxide. About three years ago, Lew began working on trying to incorporate these sensors into plant leaves. Studies in Arabidopsis thaliana, often used for molecular studies of plants, had suggested that plants might use hydrogen peroxide as a signaling molecule, but its exact role was unclear.

Lew used a method called lipid exchange envelope penetration (LEEP) to incorporate the sensors into plant leaves. LEEP, which Strano’s lab developed several years ago, allows for the design of nanoparticles that can penetrate plant cell membranes. As Lew was working on embedding the carbon nanotube sensors, he made a serendipitous discovery.

“I was training myself to get familiarized with the technique, and in the process of the training I accidentally inflicted a wound on the plant. Then I saw this evolution of the hydrogen peroxide signal,” he says.

He saw that after a leaf was injured, hydrogen peroxide was released from the wound site and generated a wave that spread along the leaf, similar to the way that neurons transmit electrical impulses in our brains. As a plant cell releases hydrogen peroxide, it triggers calcium release within adjacent cells, which stimulates those cells to release more hydrogen peroxide.

“Like dominos successively falling, this makes a wave that can propagate much further than a hydrogen peroxide puff alone would,” Strano says. “The wave itself is powered by the cells that receive and propagate it.”

This flood of hydrogen peroxide stimulates plant cells to produce molecules called secondary metabolites, such as flavonoids or carotenoids, which help them to repair the damage. Some plants also produce other secondary metabolites that can be secreted to fend off predators. These metabolites are often the source of the food flavors that we desire in our edible plants, and they are only produced under stress.

A key advantage of the new sensing technique is that it can be used in many different plant species. Traditionally, plant biologists have done much of their molecular biology research in certain plants that are amenable to genetic manipulation, including Arabidopsis thaliana and tobacco plants. However, the new MIT approach is applicable to potentially any plant.

“In this study, we were able to quickly compare eight plant species, and you would not be able to do that with the old tools,” Strano says.

The researchers tested strawberry plants, spinach, arugula, lettuce, watercress, and sorrel, and found that different species appear to produce different waveforms — the distinctive shape produced by mapping the concentration of hydrogen peroxide over time. They hypothesize that each plant’s response is related to its ability to counteract the damage. Each species also appears to respond differently to different types of stress, including mechanical injury, infection, and heat or light damage.

“This waveform holds a lot of information for each species, and even more exciting is that the type of stress on a given plant is encoded in this waveform,” Strano says. “You can look at the real time response that a plant experiences in almost any new environment.”

Stress response

The near-infrared fluorescence produced by the sensors can be imaged using a small infrared camera connected to a Raspberry Pi, a $35 credit-card-sized computer similar to the computer inside a smartphone. “Very inexpensive instrumentation can be used to capture the signal,” Strano says.

Applications for this technology include screening different species of plants for their ability to resist mechanical damage, light, heat, and other forms of stress, Strano says. It could also be used to study how different species respond to pathogens, such as the bacteria that cause citrus greening and the fungus that causes coffee rust.

“One of the things I’m interested in doing is understanding why some types of plants exhibit certain immunity to these pathogens and others don’t,” he says.

Strano and his colleagues in the Disruptive and Sustainable Technology for Agricultural Precision interdisciplinary research group at the MIT-Singapore Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, are also interested in studying is how plants respond to different growing conditions in urban farms.

One problem they hope to address is shade avoidance, which is seen in many species of plants when they are grown at high density. Such plants turn on a stress response that diverts their resources into growing taller, instead of putting energy into producing crops. This lowers the overall crop yield, so agricultural researchers are interested in engineering plants so that don’t turn on that response.

“Our sensor allows us to intercept that stress signal and to understand exactly the conditions and the mechanism that are happening upstream and downstream in the plant that gives rise to the shade avoidance,” Strano says.

The research was funded by the National Research Foundation of Singapore, the Singapore Agency for Science, Technology, and Research (A*STAR), and the U.S. Department of Energy Computational Science Graduate Fellowship Program.


Story Source:

Materials provided by Massachusetts Institute of Technology. Original written by Anne Trafton. Note: Content may be edited for style and length.


Journal Reference:

  1. Tedrick Thomas Salim Lew, Volodymyr B. Koman, Kevin S. Silmore, Jun Sung Seo, Pavlo Gordiichuk, Seon-Yeong Kwak, Minkyung Park, Mervin Chun-Yi Ang, Duc Thinh Khong, Michael A. Lee, Mary B. Chan-Park, Nam-Hai Chua, Michael S. Strano. Real-time detection of wound-induced H2O2 signalling waves in plants with optical nanosensors. Nature Plants, 2020; 6 (4): 404 DOI: 10.1038/s41477-020-0632-4

Cite This Page:

Massachusetts Institute of Technology. “Nanosensor can alert a smartphone when plants are stressed: Carbon nanotubes embedded in leaves detect chemical signals that are produced when a plant is damaged.” ScienceDaily. ScienceDaily, 15 April 2020. <www.sciencedaily.com/releases/2020/04/200415133512.htm>.

Read Full Post »

Older Posts »