Archive for the ‘Biotechnology’ Category


Video: How insect-resistant Bt GMO eggplant rescued Bangladesh’s staple crop


[Editor’s note: Pamela Ronald is plant pathologist and geneticist. She is a professor in the Genome Center and the Department of Plant Pathology at the University of California Davis.]

Eggplants are the most important vegetable crop in Bangladesh, India. Serious pests in the region have the ability to destroy an entire eggplant crop, so farmers fight back by heavily spraying insecticide. Many of these insecticides are unregulated and very dangerous, resulting in illness and death to those who come in contact with the chemicals. Pamela Ronald explains in this episode of Startalk (a podcast hosted by Neil deGrasse Tyson) how Bangladeshi and Cornell scientists teamed together to fight pests by developing GMO eggplants.

The GLP aggregated and excerpted this article to reflect the diversity of news, opinion and analysis. Read full, original post: Genetic engineering saved the Bangladeshi eggplant industry

Read Full Post »



CAAS Scientists Develop GE Cabbage Resistant to Diamondback Moth

Chinese Academy of Agricultural Sciences researchers successfully incorporated a Bt gene into cabbage plants to improve resistance to destructive pest, diamondback moth (Plutella xylostella). The results of their study are published in Scientia Horticulturae.

The researchers used Agrobacterium tumefaciens-mediated transformation to develop transgenic cabbage plants with Bacillus thuringiensis cry1Ia8 gene. The resulting transgenic plants were able to control both susceptible and Cry1Ac-resistant diamondback moth larvae.Then they analyzed the expression and inheritance of the Bt gene in four single-copy lineages and their sexually derived progenies.

Results of the analyses showed that the transgene was successfully inserted in the genome of cabbage and the inheritance of the gene in the progenies followed the Mendelian segregation pattern. These results imply that the transgenic lines exhibiting stable inheritance can be used as donor in breeding programs for cabbage.

Read the research article for more information.

Read Full Post »



larval helicoverpa CSIRO
Genomes mapped for global megapests cotton bollworm and corn earworm.

Aug 01, 2017

For the first time, researchers with Australia’s Commonwealth Scientific & Industrial Research Organization (CSIRO) have mapped the complete genome of two closely related “megapests,” potentially saving the international agricultural community billions of dollars a year.

Led by CSIRO in collaboration with a team of renowned experts, the researchers identified more than 17,000 protein coding genes in the genomes of the Helicoverpa armigera and Helicoverpa zea, commonly known as the cotton bollworm and corn earworm, respectively).

They also documented how these genetics have changed overtime.

This level of detail makes it easier for scientists to predict weak spots in both of the caterpillars, how they will mutate and even breed plants that they will not want to eat.

The bollworm and earworm are the world’s greatest caterpillar pests of broad-acre crops, causing in excess of $5 billion (U.S.) in control costs and damage each year across Asia, Europe, Africa, America and Australia.

The bollworm, which is dominant in Australia, attacks more crops and develops much more resistance to pesticides than its earworm counterpart.

“It is the single most important pest of agriculture in the world, making it humanity’s greatest competitor for food and fiber,” CSIRO scientist Dr. John Oakeshott said. “Its genomic arsenal has allowed it to outgun all our known insecticides through the development of resistance, reflecting its name, ‘armigera,’ which means armed and warlike.”

In Brazil, the bollworm has been spreading rapidly, and there have been cases of of it hybridizing with the earworm, posing a real threat that the new and improved “superbug” could spread into the U.S.

In the mid-1990s, in an attempt to tackle the bollworm, CSIRO assisted Australian cotton breeders with incorporating Bt insect resistance genes in their varieties. Bt cotton plants dispatch an insecticide from the Bacillus thuringiensis (Bt) bacteria that is toxic to the caterpillar. In the following 10 years, there was an 80% reduction in the use of chemical pesticides previously required to control bollworms.

However, the bollworm soon fought back: A small percentage of them built resistance to Bt cotton, and scientists introduced further strains of insecticides to manage the problem.

CSIRO health and biosecurity honorary fellow Dr. Karl Gordon said while a combination of Bt and some insecticides was working well in Australia, it can be costly, so it was important to comprehensively study the pests themselves to manage the problem worldwide.

“We need the full range of agricultural science,” Gordon said. “Our recent analyses of the complete genome, its adaptations and spread over the years are a huge step forward in combating these megapests.”

Identifying pest origins will enable resistance profiling that reflects the countries of origin to be included when developing a resistance management strategy while identifying incursion pathways will improve biosecurity protocols and risk analysis at biosecurity hot spots, including national ports, CSIRO said.

As part of the research, CSIRO and the team updated a previously developed potential distribution model to highlight the global invasion threat, with an emphasis on the risks to the U.S.

The findings further provide the first solid foundation for comparative evolutionary and functional genomic studies on related and other lepidopteran pests, many of which have considerable impact and scientific interest.

The genome project was undertaken by CSIRO in conjunction with the University of Melbourne, the Baylor College of Medicine in Texas, the French National Institute for Agricultural Research, the Max Plank Institute of Chemical Ecology in Germany and the U.S. Department of Agriculture’s Agricultural Research Service.

Read Full Post »

Phys.org News

Researchers find corn gene conferring resistance to multiple plant leaf diseases

July 24, 2017 by Mick Kulikowski

Researchers find corn gene conferring resistance to multiple plant leaf diseases
Credit: North Carolina State University

Researchers at North Carolina State University have found a specific gene in corn that appears to be associated with resistance to two and possibly three different plant leaf diseases.

In a paper published this week in Nature Genetics, NC State researchers pinpoint the gene – caffeoyl-CoA O-methyltransferase – that seems to confer partial to Southern blight and gray leaf spot, and possibly to Northern leaf blight, a trio of diseases that cripple worldwide.

Finding out more about the mechanisms behind complex traits like has the potential to help plant breeders build the best traits into tomorrow’s plants, says paper corresponding author Peter Balint-Kurti, a research plant pathologist and geneticist for the U.S. Department of Agriculture-Agriculture Research Service (USDA-ARS) who is housed at NC State.

Balint-Kurti’s group and colleagues identified several regions of the genome where genetic variation had a significant effect on variation in resistance to multiple diseases.

“There were hundreds of genes in this region and identifying the specific genes affecting resistance was a challenge,” Balint-Kurti said. “It’s like looking for a particular restaurant in a city – without Google to assist you.”

Using an approach called fine mapping, NC State postdoctoral researcher Qin Yang winnowed the region down to a small segment of DNA carrying just four genes, and then with a number of collaborators from NC State, Iowa State University, the University of Delaware, Texas A&M University, the University of North Carolina at Chapel Hill, Cornell University and the USDA Agricultural Research Service she performed more tests to narrow those four genes down to one.

“It’s interesting that this gene also seems to be involved in lignin production,” Yang said. “Generally, more lignin production seems to be linked to more robust disease resistance in plants.”

Balint-Kurti says the gene appears to confer a small but important disease-resistance effect.

“It’s difficult to see these small effects, but it is also difficult for pathogens to adapt to counter them,” Balint-Kurti said. “Much of the resistance to Southern leaf blight and gray leaf spot is conferred by multiple that each have small effects.”

Southern corn leaf blight is a moderate problem in the southeastern United States, Balint-Kurti says, and can be a significant problem in Southeast Asia, southern Europe and parts of Africa. Prevalent in hot, humid climates around the globe, it causes small brown spots on leaves. The spots get larger and eventually spread to the whole plant. Severe infections can cause major corn yield losses. Gray leaf spot – which produces an eponymous effect – is found both in the U.S. Midwest and Southeast and is also an important corn disease in Africa. Northern can be found in the Midwestern corn belt and in the Northeast; it causes cigar-shaped lesions on leaves. All three are so-called necrotrophic pathogens that derive much of their nutrition from dead host tissue.

“This gene is also involved in suppressing programmed cell death,” Balint-Kurti says, “which, perhaps counter-intuitively, can be a good defense mechanism against necrotrophic fungi like these three diseases.”

Explore further: Study shows corn gene provides resistance to multiple diseases

More information: A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens, Nature Genetics (2017). DOI: 10.1038/ng.3919

Read more at: https://phys.org/news/2017-07-corn-gene-conferring-resistance-multiple.html#jCp

Read Full Post »


Crops that kill pests by shutting off their genes

July 27, 2017
Cell Press
Plants are among many eukaryotes that can ‘turn off’ one or more of their genes by using a process called RNA interference to block protein translation. Researchers are now weaponizing this by engineering crops to produce specific RNA fragments that, upon ingestion by insects, initiate RNA interference to shut down a target gene essential for life or reproduction, killing or sterilizing the insects.


Plants are among many eukaryotes that can “turn off” one or more of their genes by using a process called RNA interference to block protein translation. Researchers are now weaponizing this by engineering crops to produce specific RNA fragments that, upon ingestion by insects, initiate RNA interference to shut down a target gene essential for life or reproduction, killing or sterilizing the insects. The potential of this method is reviewed in Trends in Biotechnology‘s upcoming special issue on environmental biotechnology.

As chemical pesticides raise concerns over insect resistance, collateral environmental damage, and human exposure risks, transgenic methods are becoming an attractive option for future pest control. For instance, certain strains of corn and cotton have been modified to produce protein toxins from the bacterium Bacillus thuringiensis (Bt) that poison certain worms, beetles, and moths. RNA interference adds another degree of subtlety, by instead shutting down essential genes in pests that consume crops.

“RNA interference-based pest control can provide protection at essentially no cost because once the variety is developed, the plant can just go on using it instead of needing additional applications of insecticide,” says co-senior author Ralph Bock, a director at the Max Planck Institute of Molecular Plant Physiology in Germany.

An RNA interference strategy could also address environmental and human toxicity questions around chemical pesticides. “When we target a key pest with RNA interference technology, what we are really hoping for is to see a big reduction in overall insecticide use,” says co-senior author David Heckel, a director at the Max Planck Institute of Chemical Ecology.

Besides application cost and environmental advantages, advocates of the method also point to the flexibility of finding a genetic target and its species specificity. While chemical pesticides such as organophosphates work by overloading an insect’s nervous system, a suitable RNA interference target might control something as esoteric, yet indispensable, as cellular protein sorting. Additionally, even when certain target genes are similar across species, optimally designed RNA fragments only inhibit one species and its closest relatives, rather than overwhelming non-threatening insects as some chemical pesticides do.

Earlier attempts at pest control through genetic modification that have involved engineering plants to produce proteins toxic to certain insects have prompted concerns about what happens to those proteins when the crop is harvested and ingested. “The objections to transgenic proteins involve concerns about their possible toxicity or allergenicity to humans, but with the RNA interference strategy there’s no protein that is made, just some extra RNA,” Bock says.

RNA interference faces multiple obstacles before it could work for all major crops and their pests. On the plant side, scientists have not yet found a way to transform the chloroplast genomes of cereal grains such as rice and corn, the most direct route to producing enough RNA fragments to eliminate pests at a high rate. On the insect side, prominent pests such as some caterpillars can degrade those fragments, staving off shutdown of the target gene.

Bock and Heckel both expect RNA interference technology to be roughly 6 to 7 years away from the field, but they are cautiously optimistic about its potential to change the debate around GMO technology in agriculture. “The Colorado potato beetle is almost worldwide now, even reaching into China,” Heckel says. “With such a spread of a main pest that’s resistant to insecticides, there’s a good case for the development of a transgenic potato to try to halt that trend, and hopefully it will demonstrate enough advantages to overcome the opposition to any and all genetic modifications in crops.”

Story Source:

Materials provided by Cell Pressarsbawdxytbvvbsuwrrttfex. Note: Content may be edited for style and length.

Journal Reference:

  1. Jiang Zhang, Sher Afzal Khan, David G. Heckel, Ralph Bock. Next-Generation Insect-Resistant Plants: RNAi-Mediated Crop Protection. Trends in Biotechnology, 2017; DOI: 10.1016/j.tibtech.2017.04.009

Cite This Page:

Cell Press. “Crops that kill pests by shutting off their genes.” ScienceDaily. ScienceDaily, 27 July 2017. <www.sciencedaily.com/releases/2017/07/170727104547.htm>.

Read Full Post »

With GMO insect-resistant sugarcane approval, Brazilian farmers poised to reap benefits of biotech pipeline


In June, Brazil became the second country, after Indonesia, to approve the commercial cultivation of genetically engineered insect-resistant sugarcane designed to naturally ward off the potentially devastating sugarcane borer. The borer causes an estimated $1.5 billion in losses to Brazilian farmers each year.

“Breeding programs could not produce plants resistant to this pest, and the existing chemical controls are both not effective and severely damaging to the environment,” said Adriana Hemerly, professor at the Federal University of Rio de Janeiro.

Centro de Tecnologia Canavieria SA (CTC), which developed the Bt sugarcane, is conducting research to add additional traits that could, if approved, make the sugarcane resistant to another insect and tolerant to targeted herbicides.  CTC has estimated it will take at least three years for the first sugar produced from the sugarcane to be exported. Brazil could be the first nation to sell GE sugarcane commercially, since Indonesia has not yet started growing the crop.

Brazil exports sugar to about 150 countries and some 60 percent of them do not demand regulatory approval to import sugar made from genetically modified organisms.

Bt sugarcane will be the fourth GE crop produced in Brazil following the introduction of soybeans, corn and cotton. Brazil first began to grow GE crops in the early 1990s when farmers in the south imported GE soybean seeds from Argentina. However, in 1998, the government banned the sale of GE crops after protests from anti-biotechnology advocacy groups and a lawsuit from the Brazilian Institute for Consumer Defense.

In 2003, the government lifted the ban and in the same year issued labeling requirements that required producers and sellers to identify GE ingredients if they contain more than one percent of raw material derived from GE crops. The Biosafety Act passed in 2005 outlined the regulations for biotechnology agriculture research and created the Brazilian Technical Committee of National Biosafety to oversee the biotechnology industry and approve all field tests.

Farmers in Brazil have embraced the technology. According to the International Service for the Acquisition of Agri-Biotech Applications (ISAAA), Brazil is the second largest producer of GE crops after the US, and accounts for 26.5% of global hectarage— up from 18.9% in 2011.

According to ISAAA: “Brazil’s total biotech crop hectarage of 49.14 million is an increase of 11%, from 2015…The 4.9 million hectare increase was by far the highest increase in any country worldwide in 2016 making Brazil the engine of growth in biotech crops worldwide. Biotech crops include 32.7 million hectares of soybeans; 15.7 million of corn and 0.8 million of cotton. The total planted area of these three crops in Brazil was estimated at 52.6 million hectares of which 49.14 million hectares or 93.4% was biotech.”  More than 93% of Brazilian growers of corn, cotton and soybeans now opt for GE varieties.

The government is actively encouraging research and development for additional GE crops.  According to the most recent USDA Report on Brazil’s Agricultural Biotechnology, “Currently, there are a number of biotech crops in the pipeline waiting for commercial approval, of which the most important are sugarcane, potatoes, papaya, rice and citrus. Except for sugarcane, most of these crops are in the early stages of developments and approvals are not expected within the next five years.”

GE dry edible beans, which were approved for cultivation in 2011, are expected to be commercialized sometime this year, as is GE eucalyptus, approved for cultivation in 2015. Some environmental NGOs such as Greenpeace, GM Watch, ASPTA (Advisory Services for Projects in Alternative Agriculture) and the World Rain Forest Movement, and some consumer organizations, still aggressively oppose the technology.

The ASPTA says it remains opposed to the use of GE seeds because “the technology is not necessary”, threatens the diversity of native seeds, could lead to the contamination of organic and conventional crops, increases market concentration and an oligopoly of the seeds markets, increases the use of herbicides, increases farmers’ “dependence on a technology package that forces seed purchases for many years” and “causes already confirmed environmental risks and others that are unpredictable.”

For the most part, Brazilian consumers are not well-educated about the debate over GE foods. The USDA Report on Brazilian Agriculture Biotechnology notes, “74 percent of Brazilian consumers have never heard of biotech products. In general, Brazilian consumers are disengaged from the biotechnology debate as they are more concerned about price, quality and the expiration date of their foods. However, a small number of consumers avoid GE plant products and their derivatives.” A 2015 survey of consumers noted “they are more concerned with issues related to contamination (biological and chemical) and nutritional characteristics of foods than plant biotechnology.”

Brazil’s commitment to GE biotechnology has enabled it to solidify its position as one of the major agricultural producers in the world. This is particularly important as agriculture has been one of the bright spots in a dismal economy undermined by political scandal and a sharp fall in the prices of Brazil’s non-agricultural commodities such as iron ore and oil.

Brazil is the second largest global producer of soybeans behind the US. It’s also the largest exporter of soybeans, the third largest producer and exporter of corn, the fifth largest producer of cotton and the fourth largest exporter.  These crops are all overwhelmingly produced from GE seeds.  It is also the second largest producer of beef in the world after the US and is tied with India as the largest exporter. The beef industry is heavily dependent on GE animal feed. As a result, a substantial portion of Brazil’s exports depend upon GE technology.

GE crops have become a major pillar of the economy. They are likely to become even more important in coming years as new GE crops are commercialized. GE eucalyptus trees, for instance, grow 40% faster than the traditional variety and can be used for paper, as fuel pellets for power stations and potentially to fuel cars.

Stanley Hirsch, chief executive of FuturaGene, an Israeli biotech company that has been involved in developing eucalyptus trees in Brazil, noted, “If you can increase yields by 40%, you can greatly reduce prices.  Eucalyptus trees are harvested at seven years – in Brazil we are looking to produce the same sized trees in 5.5 years.”

Researchers also have developed an edible GE bean resistant to the golden mosaic virus. Annual losses from the disease vary between 90,000 tons and 280,000 tons. Reducing the losses is of particular importance as beans are a major staple crop in Brazil.

Steven E. Cerier is a freelance international economist and a frequent contributor to the Genetic Literacy Project.


Read Full Post »

Green soybean plants close-up

Jessica Finch
Jessica Finch

CRISPR-Cas9 technology provides an extremely precise and powerful tool for modifying genomes with countless potential applications, many of which are in agriculture. The University of Warwick’s Jessica Finch considers what this might mean for food security.

With the speed and abundance of new scientific breakthroughs being made in today’s world, the term “revolutionary” is heard quite frequently; however, one genome editing technique taking the scientific world by storm seems likely to live up to this accolade: CRISPR-Cas9 gene editing.

The CRISPR-Cas9 System

CRISPR-Cas9 is a tool for very precisely engineering an organism’s genetic material. Derived from a bacterial defence mechanism against viruses, it allows bacteria to store a copy of viral DNA in their own genome, the RNA from which combines with a Cas enzyme to prompt the quick detection and destruction of that virus should the bacteria encounter it again.

The co-opted version of this system involves using synthetic guide RNAs – sections of RNA designed to match a specific section of the gene that you wish to edit – and a slightly modified version of the naturally occurring enzyme called Cas9. When a match is found, the Cas9 enzyme cuts both strands of the DNA in the region of the genome specified by the guide RNA. During the subsequent DNA repair process, specific changes can be introduced to precisely change the function of the gene in the desired way.

A CRISPR-Cas9 gene editing complex attaching to genomic DNA.

As DNA and RNA codes are universal across all known life, guide RNAs can be produced to match any gene sequence of interest, meaning that, in theory, the system can be applied to any organism of any species. This is part of the power of CRISPR-Cas9 and one of the reasons that it is causing such excitement among scientists.

Applications and implications

CRISPR-Cas9 technology was first described in 2012, and since then thousands of research papers using the technique have been published. As well as its applicability as a fundamental biological research tool in laboratories, the CRISPR-Cas9 system has been hailed for its wide array of potential “real-world” applications.

For example, many are interested in the potential applications of CRISPR-Cas9 in solving some of the trickiest genetic engineering challenges, such as producing bacteria that can break down tough plant material (like cellulose) to produce biofuels.

Increasingly, the potential applications of CRISPR-Cas9 to agricultural problems are coming under scrutiny, particularly in the context of crop improvements – such as increased stress or disease tolerance and higher yielding varieties – but also in relation to livestock engineering. For example, researchers are investigating the possibility of using CRISPR to engineer pigs that are immune to a particular haemorrhagic virus that devastates farms in Sub-Saharan Africa and Eastern Europe, or to make chickens which lay hypoallergenic eggs.

CRISPR-Cas9 could be used to introduce improvements into crops

It goes without saying that none of these proposed applications are without controversy. CRISPR-Cas9 technology raises questions about what the general public are willing to accept, whether in food or elsewhere, as well as questions about what defines a genetically modified organism, what level if any of genetic editing is permissible, and whether there are slippery slopes from correcting lethal genetic mutations all the way to eugenics or “designer babies”.

CRISPR-Cas9 and Food Security

The potential application of CRISPR-Cas9 to the improvement of crops or livestock raises the question: “does CRISPR-Cas9 have a role in food security?” The answer to this is far from simple, as it depends on a huge array of food system factors; however, I believe there could indeed be a relationship between CRISPR-Cas9 and food security.

It is important to remember that CRISPR-Cas9 is just a tool. It is a way of achieving genetic changes in a species in order to produce phenotypic changes of value to us, and we have been doing this for thousands of years through selective breeding. If the end result of genetic changes being made is, for example, a safe and environmentally sound rice containing higher concentrations of vitamin A, does it matter whether this was achieved by selective breeding, out-crossing to other species, conventional GM or CRISPR-Cas9?

The different tools used may vary in their speed and accuracy, but ultimately it is what we use them for that matters, not which tool we employ. So if genetic changes to crops and livestock for the purposes of increasing productivity are considered a valid contribution to food security, and if CRISPR-Cas9 emerges as an equally good if not better tool for achieving this than what is already used, then CRISPR-Cas9 may indeed have a role in addressing the food security challenge.

A version of this blog first appeared on the FCRN website.

Add your comment.

About Jessica Finch

Jess is a PhD student at The University of Warwick, where she researches the link between immunity and growth in plant roots, with a view of ultimately improving crop growth under conditions of biotic stress. In addition to her PhD studies, Jess works part time for the Food Climate Research Network (FCRN), contributing regularly to their food sustainability communication projects.

Read Full Post »

Older Posts »