Feeds:
Posts
Comments

Robotic weed removal eliminates need for expensive hand crews

TAGS: TECHNOLOGYTodd FitchetteFarmWise weederSingle-

Single-line organic cauliflower is weeded with a robot developed and operated by the Salinas-based FarmWise.FarmWise offers a business model that provides weeding services, freeing the grower from having to own and maintain a machine.

Todd Fitchette | Dec 04, 2020

Produce growers in Arizona and California are being introduced to the futuristic world of George Jetson as robots and artificial intelligence replace labor crews used to rogue weeds from lettuce, cauliflower, and other vegetable crops.

Salinas, Calif.-based FarmWise is a service company with a robotic weeding machine capable of rouging weeds at speeds of one-to-two miles per hour. This eliminates the need for expensive hand crews or chemical herbicides.

The FarmWise weeding machine is part of a service FarmWise provides. Unlike some companies that sell the machines, FarmWise offers a business model that provides weeding services, freeing the grower from having to own and maintain a machine.

The Titan FT35 is the third generation of machines developed by FarmWise. Company Chief Executive Officer Sebastien Boyer said testing on previous generations of machine took place over the past several years. The newest generation of machine is being used commercially in California and Arizona. https://c8c1c3523498a4e6800111cf107f6155.safeframe.googlesyndication.com/safeframe/1-0-37/html/container.html

The machine uses artificial intelligence to learn the various crops by studying the plant structure, according to Sal Espinoza, regional manager with FarmWise. Once the computer successfully learns the stem structure of the produce plant, the ability to cull weeds is simple. This process can take a few months of machine learning to get it right, Boyer said.

The machines can be outfitted with as many as six weeders. These are the rows of internal components that contain the metal knives that cut through the soil and rogue weeds as cameras track the vegetation and the AI of the onboard computer determines whether the plants are the planted produce, or weeds.

Boyer said his long-term goal is to find additional ways to mechanize the manual labor and tedious tasks performed by human hands. Through the machine learning the AI can distinguish cauliflower, celery, broccoli, and cabbage. Other crops including tomatoes and pepper are being perfected.

The company’s current business model is focused on providing services to produce growers in the desert region of southern California and Arizona after an inaugural run in the Salinas Valley. Boyer said he is also looking at European markets to expand his machine weeding technology.

Aphelenchoides besseyi

MENU

TOOLS

 Save as word file Save as PDF file Custom word…

EPPO Datasheet: Aphelenchoides besseyi

Last updated: 2020-07-24

IDENTITY

Preferred name:Aphelenchoides besseyi
Authority: Christie
Taxonomic position: Animalia: Nematoda: Chromadorea: Rhabditida: Aphelenchoididae
Other scientific names: Aphelenchoides oryzae Yokoo, Asteroaphelenchoides besseyi (Christie) Drozdovski
Common names in English: rice leaf nematode, rice white-tip nematode, strawberry crimp disease nematode, white-tip nematode
view more common names online…
Notes on taxonomy and nomenclature

The taxonomy used in this datasheet reflects developments suggested by several recent publications, summarised in Decraemer & Hunt (2013), which place Aphelenchoides in the Order Rhabditida, Suborder Tylenchina. This contrasts with the taxonomy nomenclature occasionally used by some authors (such as the CABI Invasive Species Compendium CABI, 2019; Wheeler & Crow, 2020), which place Aphelenchoides in the Order Aphelenchida, Suborder Aphelenchina (Hunt, 1993). Whilst this makes no difference to classification from the level of Superfamily (Aphelenchoidea) to species level (Aphelenchoides besseyi), those studying the species might need to be aware of differences in the literature.EPPO Categorization: A2 list
EU Categorization: RNQP (Annex IV)
view more categorizations online…
EPPO Code: APLOBE HOSTS 2020-07-24 GEOGRAPHICAL DISTRIBUTION 2020-07-24 BIOLOGY 2020-07-24 DETECTION AND IDENTIFICATION 2020-07-24 PATHWAYS FOR MOVEMENT 2020-07-24 PEST SIGNIFICANCE 2020-07-24 PHYTOSANITARY MEASURES 2020-07-24 REFERENCES 2020-07-24 ACKNOWLEDGEMENTS 2020-07-24 How to cite this datasheet? Datasheet history 2020-07-24

NEWS RELEASE 5-JAN-2021

EurekAlert

Understanding disease-induced microbial shifts may reveal new crop management strategies

AMERICAN PHYTOPATHOLOGICAL SOCIETY

Research NewsSHARE PRINT E-MAIL

IMAGE
IMAGE: ORANGE FIELDS AND LAB WORK view more CREDIT: DR. NICHOLE GINNAN

While humanity is facing the COVID-19 pandemic, the citrus industry is trying to manage its own devastating disease, Huanglongbing (HLB), also known as citrus greening disease. HLB is the most destructive citrus disease in the world. In the past decade, the disease has annihilated the Florida citrus industry, reducing orange production for juice and other products by 72%. Candidatus Liberibacter asiaticus (CLas) is the microbe associated with the disease. It resides in the phloem of the tree and, like many plant pathogens, is transmitted by insects during feeding events. Disease progression can be slow but catastrophic. Symptoms begin with blotchy leaves, yellow shoots, and stunting, and progress into yield decline, poor quality fruit, and eventually death.

Currently, the only thing citrus growers can do to protect their crops from HLB is control the insect vector. Dozens of researchers are trying to find ways to manage the disease, using strategies ranging from pesticides to antibiotics to CLas-sniffing dogs. Understanding the plant microbiome, an exciting new frontier in plant disease management, is another strategy.

Dr. Caroline Roper and first author Dr. Nichole Ginnan at the University of California, Riverside led a large research collaboration that sought to explore the microbiome’s role in HLB disease progression. Their recent article in Phytobiomes Journal, “Disease-Induced Microbial Shifts in Citrus Indicate Microbiome-Derived Responses to Huanglongbing,” moves beyond the single-snapshot view of the microbial landscape typical of microbiome research. Their holistic approach to studying plant-microbe interactions captured several snapshots across three years and three distinct tissue types (roots, stems, and leaves). What is so interesting about this research is the use of amplicon (16S and ITS) sequencing to capture the highly intricate and dynamic role of the microbiome (both bacterial and fungal) as it changes over the course of HLB disease progression.

Ginnan et al. surmised that HLB created a diseased-induced shift of the tree’s microbiome. Specifically, the researchers showed that as the disease progresses, the microbial diversity increases. They further investigated this trend to find that the increase in diversity was associated with an increase in putative pathogenic (disease-causing) and saprophytic (dead tissue-feeding) microbes. They observed a significant drop in beneficial microbes in the early phases of the disease. Arbuscular mycorrhizal fungi (AMF) were one such beneficial group that the authors highlighted as showing a drastic decline in relative abundance.

The depletion of key microbial species during disease might be opening the door for other microbes to invade. Certain resources may become more or less available, allowing different microbes to prosper. Dr. Roper and Dr. Ginnan hypothesize that when HLB begins, this depletion event triggers a surge of beneficial microbes to come to the aid of the citrus tree. They suspect that the microbes are initiating an immune response to protect the host.

As the disease proliferates, the citrus tree and its microbiome continue to change. Dr. Ginnan, the lead author on this study, found that there was an enrichment of parasitic and saprophytic microorganisms in severely diseased roots. The enrichment of these microbes may contribute to disease progression and root decline, one side effect of HLB.

Survivor trees, or trees that did not progress into severe disease, had a unique microbial profile as well. These trees were enriched with putative symbiotic microbes like Lactobacillus sp. and Aureobasidium sp. This discovery led the researchers to identify certain microbes that were associated with slower disease progression.

Dr. Ginnan says their “aha” moment during the research was in the data analysis. “Originally we were looking for taxa that increased and decreased in relative abundance as disease rating increased,” she said. “Our differential abundance analysis ended up revealing clear enrichment patterns replicated in multiple taxa.” This is the moment they began to develop the individual patterns they were seeing into a broader disease model.

This research is the foundation for future projects and collaborations that the authors are excited to continue to develop. They are motivated by the potential function of the microbiome to manage crop diseases. In the near future, they hope that these discoveries and an understanding of beneficial microbes can help establish a microbiome-mediated treatment plan to protect crops from diseases like HLB. In addition, the model they’ve developed can be applied to understanding diseases of other tree crop systems.

###

This research article was a part of Dr. Nichole Ginnan’s Ph.D. thesis under the mentorship of Dr. Caroline Roper (the lead researcher). Dr. Ginnan is now a Postdoctoral Researcher in Dr. Maggie Wagner’s Lab at the University of Kansas. She hopes to continue in academia with a research faculty position. Dr. Caroline Roper is a tenured professor at the University of California Riverside. She mentors several Ph.D. students, undergrads, and postdoctoral scholars on cutting edge research in plant-microbe interactions.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

ARS News Service ARS News Service Centipedegrass
Inflorescences (flowers) of centipedegrass. The purple anthers, shown here, contain the pollen that is collected by bees. Photo credit: Dr. Shimat Joseph, University of Georgia. Grass Flowers are Something to Buzz About For media inquiries contact: Janice López-Muñoz, (301) 793-7007 Turfgrasses sometimes get a “bad rap” for not giving our bees and other insect pollinators a helping hand on the food front. But Agricultural Research Service (ARS) and University of Georgia (UGA) studies suggest this reputation is unfair—and at least five different genera of bees would agree! In the world, 70 percent of the main crops used for human consumption are dependent on bees and other pollinators. Yet, worldwide, pollinators have been in decline for the last several decades. Turfgrasses are often blamed for the decline and it is often stated that turfgrasses are wind-pollinated, and thus useless for pollinators. The team’s findings, published in the November issue of Insects, provided evidence to the contrary. “This is vital research as we aim to protect the natural environment of pollinators that are the foundation of our food supply,” said Karen Harris-Shultz, a research geneticist at the ARS Crop Genetics and Breeding Research Laboratory in Tifton, Georgia. “This new knowledge sets the baseline for future research to show that turfgrasses can serve as a food source for pollinators.” Centipedegrass is a popular turfgrass found mainly in the southeastern part of the United States and is known for its heat tolerance and low maintenance, making it a favorite among homeowners and landscapers but prior research had suggested that it is of little use to pollinators. However, for many years Harris-Shultz had noticed bumblebees and honeybees collecting pollen from the flowers of centipedegrass lawns. She mentioned this to UGA entomologist Shimat Joseph and UGA physiologist David Jespersen. They decided to start research projects to identify pollinators that pass through centipedegrass lawns and differentiate them from insects that directly collect pollen from centipedegrass flowers. To identify the types of pollinators foraging on the grass flowers, the researchers collected specimens from 11 centipedegrass lawns starting mid-August to the end of September. Using sweep nets, they homed in on insects that were foraging pollen from centipedegrass and were later identified in the lab by Joseph. Their specimens included bumble bees, honeybees, sweat bees and hoverflies. “Our collaboration with the University of Georgia has been exceedingly fruitful,” said Harris-Shultz. “We have challenged commonly held scientific beliefs and found that a turfgrass serves as a food source for five genera of bees. We suspect other turfgrasses may serve as a food source for pollinators as well.” Now that it is known that pollinators are transiting in centipede lawns, homeowners can play an important role in helping out the insects by adopting new lawn-management practices, such as changing how often they mow. This will allow the flowers to emerge from the grass and prevent them from producing seed as quickly. Homeowners can also reduce or change their selection of insecticides to limit the pollinators’ exposure to chemicals. The Agricultural Research Service is the U.S. Department of Agriculture’s chief scientific in-house research agency. Daily, ARS focuses on solutions to agricultural problems affecting America. Each dollar invested in agricultural research results in $17 of economic impact.
Interested in reading more about ARS research? Visit our news archive U.S. DEPARTMENT OF AGRICULTURE
Agricultural Research Service

East Africa gets ready for return of destructive locust swarms

In 2020, East Africa was struck by the worst locust plague in decades. Unfortunately, now, the swarms are returning.

The locusts invading East Africa last year ravaged crops and pastures and drove the levels of hunger and economic hardship higher in parts of the region. One year later, right at the start of 2021, the United Nations has warned that a second and maybe even deadlier return of locusts has already begun.

The first wave of the pests emerged at the end of 2019, numbering in hundreds of billions, multiplying by a factor of 20 per generation, according to the UN Food and Agriculture Organization (FAO). The second generation in March and April numbered in the trillions. A plague that spread like wildfire — up to now.

Image: FAO / DUS

View Post

“It’s a continuation of the 2020 locusts swarm. The adults have flown to various areas and are laying eggs”, Frances Duncan, Professor of Animal, Plant & Environmental Sciences at the University of the Witwatersrand, told DW. “If we have good rains like it is the case at the moment in most areas, the hoppers will hatch, and we get the second wave of the swarm.”

However, Keith Cressman, FAO’s Senior Locust Forecasting Officer, remains optimistic. “I think it’s still a very dangerous situation. But it should not be worse as it was last year.” According to the weather forecast, the months to come should be dry, reducing the locusts’ reproductive rate.

Publication date: Wed 6 Jan 2021

Male weeds may hold key to their own demise

Farmers Advance Published 7:07 p.m. ET Jan. 4, 2021 | Updated 8:18 p.m. ET Jan. 4, 20210:050:58https://imasdk.googleapis.com/js/core/bridge3.433.1_en.html#goog_330654579CLOSECONNECTTWEETLINKEDINCOMMENTEMAILMORE

URBANA, Ill. – Scientists are getting closer to finding the genes for maleness in waterhemp and Palmer amaranth, two of the most troublesome agricultural weeds in the U.S.

Finding the genes could enable new “genetic control” methods for the weeds, which, in many places, no longer respond to herbicides.

“If we knew which genes control maleness and we could make those genes proliferate within the population, every plant in the field would be a male after a few generations, and theoretically, the population would crash,” says Pat Tranel, professor and associate head in the Department of Crop Sciences at the University of Illinois and lead author on a study in New Phytologist.

Tranel and his colleagues had previously identified molecular markers associated with the male genomic region. After sequencing male genomes for both species, the researchers were able to use those markers to zero in on the male-specific region. Now, they are within 120 to 150 genes of finding their target.https://96c87ff166954b95fc610cf4fc7aea8c.safeframe.googlesyndication.com/safeframe/1-0-37/html/container.html

“We’re confident most of those 120 or so genes are probably doing nothing. It’s just stuff that’s accumulated in that region of the genome,” Tranel says. “If I had to guess, I’d say maybe 10 of them are actually doing something relevant.”

Narrowing down the genes related to gender in these weeds could have practical value for control, but the study also sheds light on the phenomenon of dioecy – male and female sexual organs on separate individuals – more generally. The vast majority of animals are dioecious, but it’s rare in plants. More than 90% of flowering plants have both sexual organs on the same individual, and often within the same flower.

Waterhemp and Palmer amaranth, however, are dioecious.

Dioecy means it’s impossible for a plant to self-pollinate; instead, female gametes must be fertilized by male pollen from another plant. That’s a good thing for ensuring genetic diversity in a population. And it’s likely what has made waterhemp and Palmer amaranth so successful at evading the detrimental effects of multiple herbicides.https://96c87ff166954b95fc610cf4fc7aea8c.safeframe.googlesyndication.com/safeframe/1-0-37/html/container.html

“To date, waterhemp and Palmer amaranth have evolved resistance to herbicides spanning seven and eight modes of action, respectively. Dioecious reproduction results in all these resistance traits being mixed and matched within individuals. This mixing has allowed populations of both species to combine multiple herbicide resistances, leaving producers with few effective herbicide choices,” Tranel says.

Understanding the rare phenomenon of dioecy in plants can help scientists piece together how traits are inherited from each parent, and to understand how the phenomenon evolves.

Unlike in animals, in which dioecy is thought to have evolved just once, scientists believe dioecy in plants has evolved numerous times. And, according to Tranel’s study, it appears to have evolved independently in waterhemp and Palmer amaranth, two very closely related species.

“I’m not ready to say we absolutely know they evolved separately, but all the information we found supports that idea. Only two of the 120-150 genes were similar to each other across the two species,” Tranel says.

One of those shared genes, Florigen, helps plants respond to day length by initiating flowering. Tranel doesn’t know yet whether it determines the gender of flowers, but he’s intrigued that it showed up in the male-specific Y region for both species.

“We don’t know for sure, but maybe it’s involved with males flowering earlier than females. That could be advantageous to males because then they’d be shedding pollen when the first females become receptive. So if, in fact, Palmer and waterhemp really did evolve dioecy separately, but both acquired this Florigen gene for a fitness advantage, that would be a cool example of parallel evolution.”

Tranel hopes to narrow down the male-specific Y region in both species even further to isolate the genes that determine maleness. There’s no guarantee a genetic control solution will be developed once those genes are identified – Tranel would likely need to attract industry partners for that – but having such a tool is not as far off as it once was. CONNECTTWEETLINKEDINCOMMENTEMAILMORE

EurekAlert

NEWS RELEASE 6-JAN-2021

Researchers discover how a bio-pesticide works against spider mites

TOKYO UNIVERSITY OF AGRICULTURE AND TECHNOLOGY

Research NewsSHARE PRINT E-MAILVolume 90% 

VIDEO: THE LARVA ROTATES IN THE SPHERICAL EGG TO CUT THE CHORION FOR HATCHING; 32× ACCELERATED. view more 

CREDIT: TAKESHI SUZUKI, TUAT. THIS WAS PUBLISHED IN ENG LIFE SCI. 2020;20:525-534

Scientists have uncovered why a food-ingredient-based pesticide made from safflower and cottonseed oils is effective against two-spotted spider mites that attack over a thousand species of plants while sparing the mites’ natural predators.

An international team of scientists has uncovered how a bio-pesticide works against spider mites while sparing their natural predators.

The findings, published in the journal Engineering in Life Sciences on October 7, 2020, could present farmers and gardeners with an eco-friendly alternative to synthetic pesticides.

Food ingredients have long been used as alternative pesticides against arthropod pests, such as insects, ticks, and mites, because they tend to be less toxic to mammals and pose less impact to the environment. The way bio-pesticides work – often through physical properties instead of chemical ones – also reduces the likelihood that the targeted pest will develop resistance to the pesticide, in turn reducing the need to use greater quantities of the pesticide or develop new ones.

One such bio-pesticide, made from safflower and cottonseed oils–which takes the brand name Suffoil–has been known to be effective against two-spotted spider mites (Tetranychus urticae), a species of arachnid that attacks more than 1,100 species of plants. Suffoil has no effect on another species of mite (Neoseiulus californicus) that naturally preys on the spider mite.

A spider mite normally hatches by cutting the eggshell, or “chorion,” with its appendages as it rotates in the egg. The rotation in turn helps it cut more of the chorion and eases hatching. The spider mite embryo also uses silk threads surrounding the eggs, woven by its parent to house the eggs on the underside of leaves, which may act as leverage to aid this rotation.

To understand how Suffoil works against spider mites, the researchers dipped spider mite eggs in Suffoil and examined them using powerful microscopes. They also used spider mite eggs dipped in water as a control group.

They found that Suffoil partly covered the surface of spider mite eggs and the surrounding silk threads. More importantly, they observed that the embryonic rotational movement essential for hatching was absent or stopped in the Suffoil-covered eggs. It appears that the oil seeps into the eggs through the cut chorion, making the inside too slick for the embryo to rotate, thus preventing the embryo from hatching properly.

“The bio-pesticide works by preventing the spider mite embryo from rotating within its eggshell for hatching,” said Takeshi Suzuki, a bio-engineer at Tokyo University of Agriculture and Technology (TUAT) and senior author of the study.

“It may also weaken the toughness of silk threads and reduce the anchoring effect of the egg on the substrate,” said Suzuki.

The findings also offer an explanation as to why Suffoil has no effect on the spider mites’ natural predators – they don’t use rotation to hatch out of their eggs. This means that Suffoil may be used in conjunction with the spider mites’ natural predators.

###

Other contributors include Naoki Takeda, Ayumi Takata, Yuka Arai, Kazuhiro Sasaya, Shimpei Noyama and Noureldin Abuelfadl Ghazy, all affiliated with TUAT, Shigekazu Wakisaka at OAT Agrio Co., Ltd., and Dagmar Voigt at Technische Universität Dresden.

This work was supported by JSPS KAKENHI, Grant/Award Number: 18H02203; JSPS Invitational Fellowships for Research in Japan, Grant/Award Number: L19542; Equal Opportunities Support of the School of Science at the Technische Universität of Dresden, Germany

For more information about the Suzuki laboratory, please visit http://web.tuat.ac.jp/~tszk/

Original publication:

Naoki Takeda Ayumi Takata Yuka Arai Kazuhiro Sasaya Shimpei Noyama Shigekazu Wakisaka Noureldin Abuelfadl Ghazy Dagmar Voigt Takeshi Suzuki. A vegetable oil-based biopesticide with ovicidal activity against the two-spotted spider mite, Tetranychus urticae Koch. Eng Life Sci. 2020;20:525-534. https://doi.org/10.1002/elsc.202000042

About Tokyo University of Agriculture and Technology (TUAT):

TUAT is a distinguished university in Japan dedicated to science and technology. TUAT focuses on agriculture and engineering that form the foundation of industry, and promotes education and research fields that incorporate them. Boasting a history of over 140 years since our founding in 1874, TUAT continues to boldly take on new challenges and steadily promote fields. With high ethics, TUAT fulfills social responsibility in the capacity of transmitting science and technology information towards the construction of a sustainable society where both human beings and nature can thrive in a symbiotic relationship. For more information, please visit http://www.tuat.ac.jp/en/.

Contact:

Takeshi Suzuki, PhD
Associate Professor
Graduate School of Bio-Applications and Systems Engineering
Tokyo University of Agriculture and Technology (TUAT), Japan
tszk@cc.tuat.ac.jp

Fightback starts against fall armyworm

Published Yesterday at 09:35 AM

Minister for Agricultural Industry Development and Fisheries and Minister for Rural Communities
The Honourable Mark Furner

The Queensland Department of Agriculture and Fisheries (DAF) has received approval to import a biopesticide for research purposes, marking a significant step in the fight to combat fall armyworm (FAW).

Minister for Agricultural Industry Development and Fisheries and Minister for Rural Communities Mark Furner said the Federal Department of Agriculture, Water and the Environment (DAWE) approval to import Fawligen® meant the Queensland Government could start working on management packages for impacted industries.

“Since the initial detection of FAW in Australia in January 2020, DAF has worked closely with industry to find ways to address the threat posed by this voracious invasive pest to Queensland’s agriculture industry,” Mr Furner said.

“Fawligen® is a biopesticide targeting the FAW caterpillar which ingests virus particles, becomes infected and dies, spreading the virus to other FAW larvae in the crop.

“DAF first applied in March 2020 to bring Fawligen®, which is produced in the US by Australian company AgBiTech, into Australia.

“Getting DAWE’s approval to import Fawligen®, a naturally occurring caterpillar virus which targets FAW, is a key step forward as it has the potential to be a game changer for producers.”

Mr Furner said having access to Fawligen® would allow DAF researchers to immediately commence small scale work with AgBiTech to assess its performance on FAW populations, under local conditions and in various crops. 

“This will generate information for an Australian Pesticides and Veterinary Authority (APVMA) regulatory submission,” Mr Furner said.

“Natural biological control agents, like Fawligen®, reduce grower reliance on conventional insecticides for FAW control, reducing the risk of insecticide resistance development.

“Another significant advantage of this biopesticide is that it only kills the FAW and is non-toxic to beneficial organisms including honeybees and beneficial natural enemies such as spiders, wasps and ladybeetles.”

AgBiTech’s General Manager for Australia, Philip Armytage, said in response to the spread and rise of FAW as a global pest, in 2015 AgBiTech established a production facility in the US to manufacture Fawligen® for Brazil and other global markets.

“At the time, Fawligen® could not be produced in Australia as the FAW was not present,” Mr Armytage said.

“Globally, Fawligen® is AgBiTech’s biggest product by volume, and we are excited to be able to bring our technology back home to Australia for our farmers.

“We will accelerate the project, working closely with DAF and use all our international experience to support the commencement of the registration work as soon as possible.”

Mr Furner said DAF had a long history of working closely with AgBiTech in supporting the development of the Helicoverpa biocontrol ViVUS Max® in the early 2000s. 

“Australia is the global leader in the use of native and introduced biocontrol agents,” he said.

“We have seen excellent results in the control of similar caterpillar pests such as Helicoverpa as well as with silverleaf whitefly and prickly pear.

“In the meantime, growers should remain vigilant for the presence of FAW and check for the latest insecticide permits applying to fall armyworm using the APVMA’s permit portal.”

The latest advice about the impacts and management of fall armyworm on key crops can be found on the fall armyworm web page at business.qld.gov.au/fallarmyworm.

ENDS

Minister Furner media contact:                   Ron Goodman            0427 781 920

AgBiTech / Fawligen media contact:         Philip Armytage          0488 263585

USA: The spotted lanternfly

Spotted lanternfly is an incredibly good hitchhiker

TAGS: INSECTSORCHARD CROPSINSECTICIDECROPSarlutz73 / iStock / Getty Images Plusspotted-lanternfly-GettyImages-1054495206.jpgA key Concern is the wide host range of the spotted lanternfly. Be on the lookout for the spotted lantern fly and let NCDACS know if you see it.

John Hart | Jan 05, 2021https://66aab2f6763b501391485cbd0d058ae2.safeframe.googlesyndication.com/safeframe/1-0-37/html/container.html

The spotted lanternfly is the newest invasive pest that has entomologists across the country worried.

In a talk to the virtual North Carolina Crop Protection School, Whitney Swink, state regulatory entomologist with the North Carolina Department of Agriculture and Consumer Services, gave the rundown on the spotted lanternfly and urged farmers and others to be on the lookout for the pest and let NCDACS know if they see it.https://66aab2f6763b501391485cbd0d058ae2.safeframe.googlesyndication.com/safeframe/1-0-37/html/container.html

Swink said like many invasive pests, the spotted lanternfly is native to Asia, specifically northern China, Vietnam and Bangladesh. It was first introduced into Korea in 2004 and became a major pest there on peaches and grapevines among other plants.

It was found in Pennsylvania in 2014 and there are known infestations in Connecticut, Delaware, Maryland, Ohio, Pennsylvania, New Jersey, New York, Virginia and West Virginia.

Swink said a key concern is the wide host range of the spotted lanternfly. The insect is a pest of apples, blueberries, cherries, grapes, hops, maples, all stone fruits, walnuts and willows. More than 75 species of woody plants have been identified as hosts; Swink said the list continues to grow.

“We recently found out that chinaberry is a host. That is a big concern to us because we have a lot of that, especially in eastern North Carolina,” Swink said.

Another concern is that Tree of Heaven, which is found all over North Carolina, especially west of I-95, is the favorite food of the spotted lanternfly. “It will choose Tree of Heaven over pretty much anything else,” Swink warned.

Swink said the spotted lanternfly has been spotted in Tree of Heaven in eastern North Carolina, but it is still too early to know how active the pest has been in the state. However, she encouraged everyone to be on the lookout for the insect.

The adult spotted lanternfly is quite large, about an inch from head to wingtip. “Because they are plant hoppers, they are very poor flyers. They more glide than fly. They are quite prolific and active from mid- to later-summer through the winter. Here in North Carolina they can possibly be found even into December,” Swink said.

The forewing of the spotted lanternfly is grey with black spots and the wings tips are reticulated black blocks outlined in grey. The hind wings have contrasting patches of red and black with a white band. The legs and head are black; the abdomen is yellow with broad black bands.

“In all of the life stages —eggs, instars and adults —spotted lanternflies are incredibly good hitchhikers. They can cling to pretty much any surface. They can cling to vehicles on roads travelling 65 mph or more,” she said.

“One of the key things that spotted lanternflies do is they produce copious, copious amounts of honeydew. Essentially, they are pooping sugar water. With one insect doing that, it’s not a big deal, but if you start exponentially increasing how many are doing this, you have a problem,” she explained.RELATEDControlling herbicide resistance takes persuadingJanuary 4, 2021Battle against pesticide opponents becoming more pronouncedDecember 22, 2020Building respect and value for soybeansNovember 24, 2020

Controlling herbicide resistance takes persuading

TAGS: WEEDSRESISTANCE MANAGEMENTBrad Hairebrad-haire-farm-press-pigweed-smallish-cotton-GA.jpgCharlie Cahoon urges farmers to be on the lookout for Palmer amaranth surviving 2,4-D or dicamba. Integrated pest management is key for tackling herbicide resistance.

John Hart | Jan 04, 2021

The answers to managing herbicide resistance are fairly simple, the hard part comes in persuading farmers to implement the practices that do the most good.

Charlie Cahoon, North Carolina State University Extension weed specialist, says integrated pest management is key. Farmers need to rotate herbicide chemistries and turn to cultural and mechanical methods to alleviate some of the pressure on over-used herbicides.

“As Extension specialists, we’ve been using fire and brimstone. We think one of the tactics that drives folks to change practices on their farm is to scare them to death,” Cahoon said in a presentation at the virtual North Carolina Crop Protection School Dec. 2.

“My daddy has trained bird dogs his whole life. He used to think the way to train a dog was to use discipline. My three-year old daughter just taught him it is quite easy to train a dog with a handful of treats. There are studies to back this up, rewarding good behavior. I think that’s what we are having to learn right now with pesticide resistance: How do we get our growers to put into practice the tactics we’ve been preaching for years,” Cahoon said.

One option, Cahoon says, is providing farmers an economic incentive to implement integrated pest management practices. But where will the incentive come from?

Companies do have inventive programs, but Cahoon believes the incentive programs must cross company lines to encourage farmers to rotate modes of action and implement cultural practices to better control weeds.

Moreover, incentives must be in place for farmers to use cover crops, better crop rotation and other tools such as harvest weed seed control. “It really needs to be a whole industry initiative where we all get on the same page and say, ‘hey let’s reward some of these good behaviors and try to get ahead of this pesticide resistance issue,” Cahoon said.

Herbicide resistance is a problem that’s not going away.

In North Carolina, Cahoon says there is widespread Palmer amaranth resistance to glyphosate and ALS inhibitors, plus expected resistance to PPO inhibitors. There is common ragweed resistance to glyphosate and ALS inhibitors, primarily in the eastern part of the state. And there is widespread Italian ryegrass resistance to ALS inhibitors, mostly in the southern Piedmont.

Looking to the future, Cahoon said he won’t be surprised if North Carolina farmers begin to see resistance to group 15 herbicides, such a Dual, Warrant, Harness and Zidua.

“We use them repeatedly in most of our crops —  corn, soybeans, cotton, peanuts, and sweet potatoes. We are putting quite a bit of pressure on the group 15s, and there is already group 15 Palmer amaranth resistance in Arkansas and also a cousin to Palmer amaranth, waterhemp, is resistant to the group 15s in Illinois,” Cahoon said.

And as the use of dicamba and 2,4-D continues to grow, resistance to these chemistries can be expected as well. “There is evidence we are abusing dicamba and 2,4-D like we did glyphosate. That is unacceptable,” Cahoon said.RELATED Pigweed continues to outflank herbicidesNovember 11, 2020More resistant weeds popping up in North CarolinaMarch 5, 2020Building respect and value for soybeansNovember 24, 2020

HOME>CROPS>SOYBEANS

Boosting soybean defense response to nematodes

TAGS: CROP DISEASEFred MillerWoman looks at plant rootsFiona Goggin, professor of entomology, extracts root-knot nematodes from a hydroponic nursery. The soil borne pests are used in Division of Agriculture research to improve the plant defense response in soybeans to infection from nematodes and other soil borne diseases. University of Arkansas scientists look for ways to promote soybean defense against nematodes and other soil borne disease pathogens

Fred Miller, University of Arkansas System Division of Agriculture | Jan 04, 2021

Plants come with pretty good security alert systems against pests and maladies. But entomologist Fiona Goggin wants to give them an upgrade to mount faster, more robust defenses against diseases and nematodes that attack them through the soil. 

Goggin is a professor of entomology in the Arkansas Agricultural Experiment Station, the University of Arkansas System Division of Agriculture’s research arm. She has spent years studying the interactions of plants and insects with an eye toward developing safe biological pest control. 

The U.S. Department of Agriculture’s National Institute of Food and Agriculture awarded a $499,936 grant to Goggin and co-investigators John Rupe and Alejandro Rojas to investigate methods of boosting the defense response of soybeans against nematodes and soilborne pathogens. 

Research purpose 

Goggin said soybeans are the second-largest crop in the U.S. Arkansas ranks 11th in the country in soybean production, and it is the leading row crop in the state, according to the 2020 Arkansas Agricultural Profile. In 2018, soybeans contributed $1.36 billion to Arkansas’ agricultural economy. 

Goggin said every year American soybean growers suffer billions of dollars in yield losses to nematodes and other soilborne pathogens. Many of these soilborne pathogens, including root-knot nematodes, attack a wide variety of other crops. 

“Chemical controls for soilborne pathogens are becoming increasingly limited due to concerns about their environmental impacts and worker safety,” Goggin said. “Therefore, there is a pressing need to develop alternative techniques for the management of nematodes and other root diseases.” 

Research focus 

In her research on the defense response of soybean plants to root-knot nematodes, Goggin is focusing on plant elicitor peptides (PEPs). These are native signaling molecules that initiate a defense response in plants damaged by nematodes or disease. 

Peptides are amino acid chains that are shorter than proteins, Goggin said. She works with PEPs that respond to nematodes or other soilborne root diseases. 

Goggin said the signaling process begins with propeptides — amino acid chains that are larger than peptides but are not biologically active. “They serve as disease or pest alarms — much like burglar alarms installed in windows or doors,” she said. “When a disease damages the plant, they are broken. Part of the broken propeptide is a PEP that then becomes biologically active and elicits a defense response in the plant.” 

Goggin said biologists refer to this as a damage-associated molecular pattern. Her goal is to increase the level of propeptides in the plants to boost the defense response. 

“Research has shown that when the levels of propeptides increase, plants become more resistant to diseases,” she said. 

Making it work 

Goggin, Rupe and Rojas are looking at potential methods to achieve higher levels of peptides. 

“We could use genetic engineering to increase the levels of propeptides in soybeans and potentially other crop plants,” Goggin said. 

Genetically modified organisms are controversial and greatly restricted in many countries. As an alternative, Goggin is looking at two potential methods of coating the seeds with a peptide layer. Seed coating may offer improved nematode and disease resistance during the critical early stages of plant growth, she said. 

One method under investigation is to artificially synthesize peptides for seed coatings. “This offers a non-GMO alternative that can be used with any crop variety a grower prefers,” Goggin said. She is looking at multiple ways to reduce the relatively high cost of synthesizing propeptides. 

Another method under investigation is to engineer beneficial rhizobacteria to synthesize the peptides and to apply the bacteria as a biocontrol seed. These root-associated bacteria form symbiotic relationships with many plants, including soybeans. 

“The rhizobacteria offer a less costly way to produce than synthetic propeptides,” Goggin said. “They also can offer resistance to other soilborne diseases that affect crop seeds and seedlings.” 

Two of Goggin’s out-of-state co-investigators — Cynthia Gleason at Washington State University and Lei Zhang at Purdue University — are working out a bacterial delivery system to use the rhizobacteria as a biological control agent. 

Goggin said her research team would test each approach’s effects on infection by nematodes and economically harmful pathogens. “We will also more broadly assess the effects of these treatments on soil health, or the balance between pathogenic and beneficial microbes in the soil,” she said. 

They also will test the effects of each approach on plant growth, health, and yields, Goggin said. 

Going forward with soybean protection

“If PEPs prove useful for crop protection in soybean, our results could, in the future, be extended to many other crops because these signaling compounds are found in a wide range of plant species,” Goggin said. “This research seeks to enable biologically based pest management, which enhances our agricultural economy while also contributing to food safety and environmental protection.” 

To learn more about Division of Agriculture research, visit the Arkansas Agricultural Experiment Station website: https://aaes.uark.edu. Source: University of Arkansas System Division of Agriculture, which is solely responsible for the information provided and is wholly owned by the source. Informa Business Media and all its subsidiaries are not responsible for any of the content contained in this information asset. 

Proteins enable crop-infecting fungi to ‘smell’ food

Humans use same proteins to smell, taste, and see

Date:December 15, 2020 Source: University of California – Riverside

Summary:New research shows the same proteins that enable human senses such as smell also allow certain fungi to sense something they can eat. Share:    FULL STORY


New research shows the same proteins that enable human senses such as smell also allow certain fungi to sense something they can eat.

The UC Riverside study offers new avenues for protecting people from starvation due to pathogenic fungus-induced food shortages. Understanding how fungi sense and digest plants can also help scientists engineer fungal strains that are more efficient at producing biofuels.

Newly published by the American Society for Microbiology journal mBio, the study details how fungi react to cellulose, the main component of plant cell walls. Humans and other animals lack the enzymes to digest cellulose, but fungi can convert it into glucose, a sugar that makes an excellent biofuel feedstock.

Key to this conversion process are G proteins, which send signals from a cell’s outer membrane into its nucleus.

“These proteins get information about what’s outside the cell into what is essentially the brain of the cell, the nucleus, which in turn instructs the cell to produce a cocktail of cellulose-digesting enzymes,” said study author and biochemistry doctoral student Logan Collier.

To determine whether G proteins play a role in the ability of fungi to sense nearby cellulose, the researchers modified strains of a fungus called Neurospora crassa. Once the G proteins were mutated, Neurospora no longer had the ability to “see” that it was on cellulose.

Neurospora is a filamentous fungus, which means it’s made of thin tubes that extend and form a mesh as it grows. It plays a critical role in the environment, recycling carbon by consuming decaying plant matter and converting it into glucose.

It is also closely related to pathogenic fungi that kill crops such as tomatoes and wheat. One related species also causes rice blast, which destroys enough rice to feed about 80 million people annually. Knowing how to interfere with G protein signaling in the fungus so it cannot detect its “food” could be crucial to stopping these kinds of infections.

“No one has previously examined every member of the signaling pathway, creating a model for how every all of the G proteins work together,” said Katherine Borkovich, a UC Riverside microbiology and plant pathology professor, who led the study.

Moving forward, the research team would also like to apply what they’ve learned to biofuel production.

“It does appear from our study that there are ways to modify the fungus to produce extra cellulose-digesting enzymes, which would make them more efficient at breaking down biofuel feedstocks,” Collier said. Based on renewable sources like plants, biofuels can play a valuable role in reducing dependence on fossil fuels.